精英家教网 > 高中数学 > 题目详情

设函数
(1)求的单调区间;
(2)当时,若方程上有两个实数解,求实数的取值范围;
(3)证明:当时,

(1)时,在上是增函数;时,在上单调递增,在上单调递减.(2),(3)详见解析

解析试题分析:(1)求函数单调区间,首先明确定义域,再求导,由于含有参数,需分类讨论根的情况. 时,,所以上是增函数.当时,由,所以上单调递增,在上单调递减.(2)本题考查函数与方程思想,实际研究直线与函数图像交点有两个的情况,由(1)知上单调递增,在上单调递减,且,所以当时,方程有两解.(3)本题关键在于构造函数,首先将两变量分离,这要用到取对数,即因此只需证,即证为单调减函数,可利用导数,再结合(1)的结论,可证.
试题解析:(1)
时,,∴上是增函数.         1分
②当时,由,由
上单调递增,在上单调递减.           4分
(2)当时,由(1)知,上单调递增,在上单调递减,
,              6分

∴当时,方程有两解.            8分
(3)∵.∴要证:只需证
只需证:
,                               10分

由(1)知单调递减,           12分
,即是减函数,而
,故原不等式成立.                         14分
考点:利用导数求单调区间,利用导数证不等式

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数
(1)若,试确定函数的单调区间;
(2)若,且对于任意恒成立,试确定实数的取值范围;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1).求函数f(x)的单调区间及极值;
(2).若x1≠x2满足f(x1)=f(x2),求证:x1+x2<0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知曲线.
(1)求曲线在点()处的切线方程;
(2)若存在使得,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)求的单调区间;
(2)当时,求证:恒成立..

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在边长为的正方形铁皮的四切去相等的正方形,再把它的边沿虚线折起,做成一个无盖的方底箱子,箱底的边长是多少时,箱子的容积最大?最大容积是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知
(1)若,求曲线在点处的切线方程;
(2)若 求函数的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(满分12分)已知函数.
(1)当时,求函数的单调区间;
(2)若函数在区间上为减函数,求实数的取值范围;
(3)当时,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数时都取得极值.
(1)求的值;
(2)若对,不等式恒成立,求的取值范围.

查看答案和解析>>

同步练习册答案