精英家教网 > 高中数学 > 题目详情

直线l过抛物线y2=2px(p>0)的焦点,且与抛物线交于A、B两点,若线段AB的长是8,AB的中点到y轴的距离是2,则此抛物线方程是________.

y2=8x
分析:设出A,B的坐标,根据抛物线的定义,利用AB中点到y轴的距离求得p,从而可求抛物线方程.
解答:设A(x1,y1),B(x2,y2),根据抛物线定义可得x1+x2+p=8,
∵AB的中点到y轴的距离是2,

∴p=4;
∴抛物线方程为y2=8x
故答案为:y2=8x
点评:本题主要考查了抛物线的标准方程.解题的关键是利用了抛物线的定义.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设斜率为2的直线l过抛物线y2=ax(a≠0)的焦点F,且和y轴交于点A,若△OAF(O为坐标原点)的面积为4,则抛物线方程为(  )
A、y2=±4xB、y2=4xC、y2=±8xD、y2=8x

查看答案和解析>>

科目:高中数学 来源: 题型:

已知斜率为2的直线l过抛物线y2=ax的焦点F,且与y轴相交于点A,若△OAF(O为坐标原点)的面积为4,则抛物线方程为(  )
A、y2=4xB、y2=8xC、y2=4x或y2=-4xD、y2=8x或y2=-8x

查看答案和解析>>

科目:高中数学 来源: 题型:

设斜率为k的直线l过抛物线y2=8x的焦点F,且和y轴交于点A,若△OAF (O为坐标原点)的面积为4,则实数k的值为(  )
A、±2B、±4C、2D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,直线l过抛物线y2=4x的焦点F交抛物线于A、B两点.
(1)若|AB|=8,求直线l的斜率
(2)若|AF|=m,|BF|=n.求证
1
m
+
1
n
为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)直线l过抛物线y2=2px(p>0)的焦点,且与抛物线相交于A(x1,y1),B(x2,y2)两点,证明:y1y2=-p2
(2)直线l过抛物线y2=2px(p>0)的焦点,且与抛物线相交于A(x1,y1),B(x2,y2)两点,点C在抛物线的准线上,且BC∥x轴,证明:直线AC经过原点.

查看答案和解析>>

同步练习册答案