精英家教网 > 高中数学 > 题目详情
7.已知$\overrightarrow{a}$=(-2,1,3),$\overrightarrow{b}$=(-1,2,1),若$\overrightarrow{a}$⊥($\overrightarrow{a}$-λ$\overrightarrow{b}$),则实数λ的值为(  )
A.$\frac{1}{2}$B.2C.-$\frac{1}{2}$D.-2

分析 利用向量的坐标运算、数量积运算与向量垂直的关系即可得出.

解答 解:$\overrightarrow{a}$-λ$\overrightarrow{b}$=(-2,1,3)-λ(-1,2,1)=(-2+λ,1-2λ,3-λ),
∵$\overrightarrow{a}$⊥($\overrightarrow{a}$-λ$\overrightarrow{b}$),
∴$\overrightarrow{a}$•($\overrightarrow{a}$-λ$\overrightarrow{b}$)=-2(-2+λ)+(1-2λ)+3(3-λ)=0,
∴14-7λ=0,
解得λ=2.
故选:B.

点评 本题考查了向量的坐标运算、数量积运算与向量垂直的关系,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.将一张长8cm,宽6cm的长方形的纸片沿着一条直线折叠,如图1,图2,不考虑其它情况,折痕(线段)将纸片分成两部分,面积分别为S1cm2,S2cm2,其中S1≤S2.记折痕长为lcm.
(1)若l=4,求S1的最大值;
(2)若S1:S2=1:3,求l的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.斜率为2的直线m交双曲线$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}$=1与A,B两点,抛物线y2=2px恰过AB中点M,若M的横坐标为$\frac{p}{2}$,则双曲线的离心率e═$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知函数f(x)=$\left\{\begin{array}{l}{{2}^{-2x},x≤-1}\\{2x+2,x>-1}\end{array}\right.$,则不等式f(x)≥2的解集为(-∞,-1]∪[0,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$为三个非零平面向量,若$\overrightarrow{p}$=$\frac{\overrightarrow{a}}{\overrightarrow{|a|}}$+$\frac{\overrightarrow{b}}{\overrightarrow{|b|}}$+$\frac{\overrightarrow{c}}{\overrightarrow{|c|}}$,则|$\overrightarrow{p}$|的最大值与最小值之和为(  )
A.3B.2C.1D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若a,b∈{x||x|+|x+1|>1},且ab=1,则a+2b的最小值是$2\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知O为坐标原点,A,B,C三点的坐标分别是(2,-1,2),(4,5,-1),(-2,2,3),求点P坐标.使:
(1)$\overrightarrow{OP}$=$\frac{1}{2}$($\overrightarrow{AB}$-$\overrightarrow{AC}$);
(2)$\overrightarrow{AP}$=$\frac{1}{2}$($\overrightarrow{AB}$-$\overrightarrow{AC}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{1}{2}$,右焦点F2到直线l1:3x+4y=0的距离为$\frac{3}{5}$.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过点F2的直线l与椭圆C相交于E、F两点,A为椭圆的右顶点,直线AE,AF分别交直线x=4于点M,N,线段MN的中点为P.求证:直线PF2⊥l.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知${C}_{n}^{5}$=${C}_{n}^{6}$,求${C}_{n+3}^{2}$的值.

查看答案和解析>>

同步练习册答案