精英家教网 > 高中数学 > 题目详情
3.函数y=tan(2x+$\frac{π}{4}$)的单调递增区间是($\frac{kπ}{2}$-$\frac{3π}{8}$,$\frac{kπ}{2}$+$\frac{π}{8}$),k∈Z.

分析 根据正切函数y=tanx的单调增区间,令kπ-$\frac{π}{2}$<2x+$\frac{π}{4}$<kπ+$\frac{π}{2}$,k∈Z;
求出不等式组的解集即可.

解答 解:函数y=tan(2x+$\frac{π}{4}$),
令kπ-$\frac{π}{2}$<2x+$\frac{π}{4}$<kπ+$\frac{π}{2}$,k∈Z;
解得kπ-$\frac{3π}{4}$<2x<kπ+$\frac{π}{4}$,k∈Z,
即$\frac{kπ}{2}$-$\frac{3π}{8}$<x<$\frac{kπ}{2}$+$\frac{π}{8}$,k∈Z;
所以函数y=2tan(2x+$\frac{π}{4}$)的单调递增区间是:
($\frac{kπ}{2}$-$\frac{3π}{8}$,$\frac{kπ}{2}$+$\frac{π}{8}$),k∈Z.
故答案为:($\frac{kπ}{2}$-$\frac{3π}{8}$,$\frac{kπ}{2}$+$\frac{π}{8}$),k∈Z.

点评 本题考查了正切函数的单调性以及整体代换的应用问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.过抛物线y2=4x的焦点F作互相垂直的弦AC,BD,则点A,B,C,D所构成四边形的面积的最小值为(  )
A.16B.32C.48D.64

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.椭圆$\frac{x^2}{8}+\frac{y^2}{6}$=1上存在n个不同的点P1,P2,…,Pn,椭圆的右焦点为F.数列{|PnF|}是公差大于$\frac{1}{5}$的等差数列,则n的最大值是(  )
A.16B.15C.14D.13

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设数列{an}的前n项和为Sn,an是Sn和1的等差中项.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设数列bn=an•log2an+1,求{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.△ABC的内角A,B,C的对边分别为a,b,c,已知$\overrightarrow{m}$=(2b,1).$\overrightarrow{n}$=(ccosA+acosC,cosA),且$\overrightarrow{m}$∥$\overrightarrow{n}$.
(1)求角A的值;
(2)若b,a,c成等比数列.且△ABC的外接圆半径R=$\sqrt{3}$.试求△ABC的内切圆半径.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.过点P(1,1)作直线l交圆x2+y2=4于A,B两点,若$|AB|=2\sqrt{3}$,则直线l的方程为x=1或y=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若x、y满足约束条件$\left\{\begin{array}{l}{2x+y≤8}\\{x+3y≤9}\\{x≥0,y≥0}\end{array}\right.$,则4x+y的最大值为16.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知椭圆${C_1}:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左右焦点分别为F1,F2,且F2为抛物线${C_2}:{y^2}=2px$的焦点,C2的准线l被C1和圆x2+y2=a2截得的弦长分别为$2\sqrt{2}$和4.
(1)求C1和C2的方程;
(2)直线l1过F1且与C2不相交,直线l2过F2且与l1平行,若l1交C1于A,B,l2交C1交于C,D,且在x轴上方,求四边形AF1F2C的面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知圆${C_1}:{({x-4})^2}+{({y-2})^2}=20$与y轴交于O,A两点,圆C2过O,A两点,且直线C2O与圆C1相切;
(1)求圆C2的方程;
(2)若圆C2上一动点M,直线MO与圆C1的另一交点为N,在平面内是否存在定点P使得PM=PN始终成立,若存在求出定点坐标,若不存在,说明理由.

查看答案和解析>>

同步练习册答案