精英家教网 > 高中数学 > 题目详情
19.已知关于x的方程${log_2}({4^x}+1)=x+a$有两个不同实数解,则实数a的取值范围为(  )
A.(-∞,0)B.(-1,2)C.(1,+∞)D.[1,+∞)

分析 由参数分离可得2a=2x+2-x,由f(x)=2x+2-x,可得f(x)为偶函数,运用基本不等式,即可得到a的范围.

解答 解:关于x的方程${log_2}({4^x}+1)=x+a$有两个不同实数解,
即有2x+a=4x+1,即2a=2x+2-x
由f(x)=2x+2-x,f(-x)=2-x+2x=f(x),
f(x)为偶函数,
又f(x)≥2$\sqrt{{2}^{x}•{2}^{-x}}$=2,
当且仅当x=0时,取得等号.
则有2a>2,解得a>1.
故选C.

点评 本题考查函数和方程的转化思想,考查函数的奇偶性和基本不等式的运用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.如图,设α∈(0,π)且$α≠\frac{π}{2}$,当∠xOy=α时,定义平面坐标系xOy为斜坐标系,在斜坐标系中,任意一点P的斜坐标这样定义:e1,e2分别为x轴、y轴正方向相同的单位向量,若$\overrightarrow{OP}=x{e_1}+y{e_2}$,则记为$\overrightarrow{OP}=(x,y)$,那么在以下的结论中,正确的有(2)(4)(填上所有正确结论的序号).
(1)设a=(m,n),则$|a|=\sqrt{{m^2}+{n^2}}$;
(2)设a=(m,n),b=(s,t),若a=b,则m=s,n=t;
(3)设a=(m,n),b=(s,t),若a⊥b,则ms+nt=0;
(4)设a=(m,n),b=(s,t),若a∥b,则mt-ns=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.一轮渡向北以航速20km/h航行,此次吹来西方,风速5m/s,用作图法求轮渡的实际航行速度和方向.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=ex-ax2-bx-1,其中a,b∈R.e=2.71828…,设g(x)是函数f(x)的导函数.
(1)求函数g(x)的单调区间;
(2)求函数g(x)在区间[0,1]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.对于实数a和b,定义运算*:$a*b=\left\{\begin{array}{l}{a^2}-ab(a≤b)\\{b^2}-ab(a>b)\end{array}\right.$,设f(x)=(2x-1)*(x-1),若直线y=m与函数y=f(x)恰有三个不同的交点,则m的取值范围(0,$\frac{1}{4}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设二次函数y=f(x)的最大值为9,且f(3)=f(-1)=5,
(1)求f(x)的解析式;
(2)求f(x)在[0,4]上的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$,x∈R)的部分图象如图所示.
(1)求f(x)的解析式;
(2)当x∈[0,$\frac{π}{2}$]时,求函数g(x)=f(x+$\frac{π}{6}$)-f(x+$\frac{π}{3}$)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.集合A满足条件:若a∈A,则f(a)=$\frac{2a}{2a+1}$∈A,且f(f(a))∈A,依此类推.f(f(f(a)))∈A,…,依此类推.
(1)若集合A为单元素集,求a和A;
(2)满足条件的集合A中是否可有两个元素?若存在,求出集合A;若不存在,说明理由;
(3)用描述法写出一个满足条件的无穷集合A.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.解下列方程:
(1)5x+1=${3}^{{x}^{2}-1}$
(2)${log}_{2}{(9}^{x}-5)$)=${log}_{2}{(3}^{x}-2)$+2.

查看答案和解析>>

同步练习册答案