精英家教网 > 高中数学 > 题目详情
8、函数f(x)=x2-2ax-3在区间[1,2]上存在反函数的充分必要条件是(  )
分析:本题考查反函数的概念、充要条件的概念、二次函数的单调性等有关知识.
根据反函数的定义可知,要存在反函数,则原函数在此区间上是单调的,由此根据二次函数的对称抽和闭区间的相对关系即可作出判断.
解答:解析:∵f(x)=x2-2ax-3的对称轴为x=a,
∴y=f(x)在[1,2]上存在反函数的充要条件为[1,2]⊆(-∞,a]或[1,2]⊆[a,+∞),
即a≥2或a≤1.
答案:D
点评:本题虽然小巧,用到的知识确实丰富的,具有综合性特点,涉及了反函数、充要条件、二次函数等三个方面的知识,是这些内容的有机融合,是一个极具考查力的小题;
解题中易错点有反函数存在的条件不清晰、充要条件的判定不准确、二次函数的对称轴与其单调性的关联的确定.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=x2-ax+4+2lnx
(I)当a=5时,求f(x)的单调递减函数;
(Ⅱ)设直线l是曲线y=f(x)的切线,若l的斜率存在最小值-2,求a的值,并求取得最小斜率时切线l的方程;
(Ⅲ)若f(x)分别在x1、x2(x1≠x2)处取得极值,求证:f(x1)+f(x2)<2.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=x2+2x在[m,n]上的值域是[-1,3],则m+n所成的集合是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=x2-2x-3的图象为曲线C,点P(0,-3).
(1)求过点P且与曲线C相切的直线的斜率;
(2)求函数g(x)=f(x2)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=-x2+2x,x∈(0,3]的值域为
[-3,1]
[-3,1]

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x2+
12
x
+lnx的导函数为f′(x),则f′(2)=
5
5

查看答案和解析>>

同步练习册答案