精英家教网 > 高中数学 > 题目详情

【题目】下列几个命题
①奇函数的图象一定通过原点
②函数y= 是偶函数,但不是奇函数
③函数f(x)=ax1+3的图象一定过定点P,则P点的坐标是(1,4)
④若f(x+1)为偶函数,则有f(x+1)=f(﹣x﹣1)
⑤若函数f(x)= 在R上的增函数,则实数a的取值范围为[4,8)
其中正确的命题序号为

【答案】③⑤
【解析】解:①奇函数的图象关于原点对称,若在原点有意义,则一定通过原点,故错误;②函数y= 的定义域为{﹣1,1},整理后y=0,即是偶函数,又是奇函数,故错误;③a0=1,当x=1时,f(1)=4,函数f(x)=ax1+3的图象一定过定点P(1,4),故正确;④若f(x+1)为偶函数,由偶函数定义可知f(﹣x+1)=f(x+1),故错误;⑤若函数f(x)= 在R上的增函数,
∴a>1,且4﹣ >0,f(1)≤a,
∴实数a的取值范围为[4,8)故正确;
故正确额序号为③⑤.
【考点精析】关于本题考查的命题的真假判断与应用,需要了解两个命题互为逆否命题,它们有相同的真假性;两个命题为互逆命题或互否命题,它们的真假性没有关系才能得出正确答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知二次函数,且,函数的图象与直线相切.

(1)求的解析式;

(2)若当时, 恒成立,求实数的取值范围;

(3)是否存在区间,使得在区间上的值域恰好为?若存在,请求出区间,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆与抛物线共焦点,抛物线上的点My轴的距离等于,且椭圆与抛物线的交点Q满足

(I)求抛物线的方程和椭圆的方程;

(II)过抛物线上的点作抛物线的切线交椭圆于 两点,设线段AB的中点为,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若函数有零点,求实数的取值范围;

(2)证明:当时,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x2﹣1)定义域为[0,3],则f(2x﹣1)的定义域为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在四棱锥中,底面是矩形,且平面分别是线段的中点

1证明:

2在线段上是否存在点,使得平面,若存在,确定的位置;若不存在,说明理由

3与平面所成的角为,求二面角的余弦值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 表示两条不同的直线, 表示三个不同的平面,给出下列四个命题:

,则

,则

,则

,则

其中正确命题的序号为( )

A. ①② B. ②③ C. ③④ D. ②④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=bax(其中a,b为常量,且a>0,a≠1)的图象经过点A(1,6),B(3,24).
(1)求f(x)的表达式;
(2)设函数g(x)=f(x)﹣2×3x , 求g(x+1)>g(x)时x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了研究家用轿车在高速公路上的车速情况,交通部门对名家用轿车驾驶员进行调查,得到其在高速公路上行驶时的平均车速情况为:在名男性驾驶员中,平均车速超过的有人,不超过的有人;在名女性驾驶员中,平均车速超过的有人,不超过的有人.

(Ⅰ)完成下面的列联表,并判断是否有的把握认为平均车速超过100与性别有关;

平均车速超过人数

平均车速不超过人数

合计

男性驾驶人数

女性驾驶人数

合计

(Ⅱ)在被调查的驾驶员中,按分层抽样的方法从平均车速不超过的人中抽取人,再从这人中采用简单随机抽样的方法随机抽取人,求这人恰好为名男生、名女生的概率.

参考公式与数据:,其中.

0.150

0.100

0.050

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

同步练习册答案