【题目】下列说法中,正确的序号是_________.
① 的图象与的图象关于轴对称;
② 若,则的值为1;
③ 若, 则 ;
④ 把函数的图象向左平移个单位长度后,所得图象的一条对称轴方程为;
⑤ 在钝角中,,则;
⑥ .
科目:高中数学 来源: 题型:
【题目】设直线l1 , l2分别是函数f(x)= 图象上点P1 , P2处的切线,l1与l2垂直相交于点P,且l1 , l2分别与y轴相交于点A,B,则△PAB的面积的取值范围是( )
A.(0,1)
B.(0,2)
C.(0,+∞)
D.(1,+∞)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x2+ax+b,实数x1,x2满足x1∈(a-1,a),x2∈(a+1,a+2).
(Ⅰ)若a<-,求证:f(x1)>f(x2);
(Ⅱ)若f(x1)=f(x2)=0,求b-2a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)=x3+ax2﹣a2x+1,g(x)=ax2﹣2x+1,其中实数a≠0.
(1)若a>0,求函数f(x)的单调区间;
(2)当函数y=f(x)与y=g(x)的图象只有一个公共点且g(x)存在最小值时,记g(x)的最小值为h(a),求h(a)的值域;
(3)若f(x)与g(x)在区间(a,a+2)内均为增函数,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知,如图,在直二面角中,四边形是边长为的正方形,,且.
(Ⅰ)求证:平面;
(Ⅱ)求二面角的余弦值;
(Ⅲ)在线段(不包含端点)上是否存在点,使得与平面所成的角为;若存在,写出的值,若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知定义域为R的函数f(x)=是奇函数.
(1)求b的值,判断并用定义法证明f(x)在R上的单调性;
(2)解不等式f(2x+1)+f(x)<0.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com