精英家教网 > 高中数学 > 题目详情

【题目】下列说法中,正确的序号是_________.

的图象与的图象关于轴对称;

,则的值为1;

, 则

把函数的图象向左平移个单位长度后,所得图象的一条对称轴方程为

在钝角中,,则

.

【答案】②③⑤

【解析】

利用三角函数的图象性质逐一判断即可.

为偶函数,为奇函数,显然不关于轴对称,错误;

两边平方可得所以

正确

因为0<θ所以0<sinθθ<,所以cos(sinθ)>cosθ,令x=cosθ,所以cosθ>sin(cosθ),:cos(sinθ)>sin(cosθ),正确

把函数的图象向左平移个单位长度后,

得到,当时,,故不是对称轴,错误;

在钝角中,,∴,即,正确;

,错误.

故答案为:②③⑤

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设直线l1 , l2分别是函数f(x)= 图象上点P1 , P2处的切线,l1与l2垂直相交于点P,且l1 , l2分别与y轴相交于点A,B,则△PAB的面积的取值范围是(  )
A.(0,1)
B.(0,2)
C.(0,+∞)
D.(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=x2+ax+b,实数x1x2满足x1∈(a-1,a),x2∈(a+1,a+2).

(Ⅰ)若a-,求证:fx1)>fx2);

(Ⅱ)若fx1)=fx2)=0,求b-2a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=x3+ax2﹣a2x+1,g(x)=ax2﹣2x+1,其中实数a≠0.
(1)若a>0,求函数f(x)的单调区间;
(2)当函数y=f(x)与y=g(x)的图象只有一个公共点且g(x)存在最小值时,记g(x)的最小值为h(a),求h(a)的值域;
(3)若f(x)与g(x)在区间(a,a+2)内均为增函数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列{an}满足 ,Sn是{an}的前n项和,则S40=(
A.880
B.900
C.440
D.450

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,如图,在直二面角中,四边形是边长为的正方形,,且.

(Ⅰ)求证:平面;

(Ⅱ)求二面角的余弦值;

(Ⅲ)在线段(不包含端点)上是否存在点,使得与平面所成的角为;若存在,写出的值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图, 为圆的直径在圆 矩形所在的平面和圆所在的平面互相垂直.

1)求证:平面平面

2)求几何体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义域为R的函数fx)=是奇函数.

(1)求b的值,判断并用定义法证明fx)在R上的单调性;

(2)解不等式f(2x+1)+fx)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱ABC﹣A1B1C1中,ACBC,点D是AB的中点.求证:

(1)ACBC1

(2)AC1平面B1CD.

查看答案和解析>>

同步练习册答案