【题目】如图,在平面直角坐标系中,椭圆:上的动点到一个焦点的最远距离与最近距离分别是与,的左顶点为与轴平行的直线与椭圆交于、两点,过、两点且分别与直线、垂直的直线相交于点.
(1)求椭圆的标准方程;
(2)证明点在一条定直线上运动,并求出该直线的方程;
(3)求面积的最大值.
【答案】(1);(2)证明见解析,;(3).
【解析】
(1)根据椭圆的性质可以由椭圆:上的动点到一个焦点的最远距离与最近距离分别是与得到两个方程,解方程即可求出椭圆的标准方程;
(2)设,,显然直线,,,的斜率都存在,设为,,,,求出它们的表达式,求出直线,的方程,消去,最后可以证明点在一条定直线上运动;
(3)由(2)得点的纵坐标,求出的表达式,再利用均值不等式求出面积的最大值.
(1)因为椭圆:上的动点到一个焦点的最远距离与最近距离分别是与,所以有,
的标准方程为.
(2)设,,显然直线,,,的斜率都存在,设为,,,,则,,,,所以直线,的方程为:,,消去得,化简得,故点在定直线上运动.
(3)由(2)得点的纵坐标为,
又,所以,则,
所以点到直线的距离为,
将代入得,
所以面积
,当且仅当,即时等号成立,故时,面积的最大值为.
科目:高中数学 来源: 题型:
【题目】已知函数,.
(1)当时,试讨论方程的解的个数;
(2)若曲线和上分别存在点,,使得是以原点为直角顶点的直角三角形,且斜边的中点在轴上,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,在四棱柱中,侧棱底面,,,,,为棱的中点.
(1)证明:;
(2)求二面角的正弦值;
(3)设点在线段上,且直线与平面所成角的正弦值是,求线段的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知,点满足,记点的轨迹为.斜率为的直线过点,且与轨迹相交于两点.
(1)求轨迹的方程;
(2)求斜率的取值范围;
(3)在轴上是否存在定点,使得无论直线绕点怎样转动,总有成立?如果存在,求出定点;如果不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,正三角形的边长为,、、分别为各边的中点,将△沿、、折叠,使、、三点重合,构成三棱锥.
(1)求平面与底面所成二面角的余弦值;
(2)设点、分别在、上, (为变量) ;
①当为何值时,为异面直线与的公垂线段? 请证明你的结论
②设异面直线与所成的角为,异面直线与所成的角为,试求的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com