精英家教网 > 高中数学 > 题目详情
20.函数f(x)=(kx+4)lnx-x(x>1),若f(x)>0的解集为(s,t),且(s,t)中只有一个整数,则实数k的取值范围为($\frac{1}{ln3}$-$\frac{4}{3}$,$\frac{1}{2ln2}-1$)..

分析 令f(x)>0,得到kx+4>$\frac{x}{lnx}$,令g(x)=$\frac{x}{lnx}$,结合函数图象求出k的范围即可.

解答 解:令f(x)>0,得:kx+4>$\frac{x}{lnx}$,
令g(x)=$\frac{x}{lnx}$,则g′(x)=$\frac{lnx-1}{{(lnx)}^{2}}$,
令g′(x)>0,解得:x>e,令g′(x)<0,解得:1<x<e,
故g(x)在(1,e)递减,在(e,+∞)递增,
故g(x)≥g(e)=e,
$\left\{\begin{array}{l}{2k+4<\frac{2}{ln2}}\\{4k+4<\frac{4}{ln4}}\\{3k+4>\frac{3}{ln3}}\end{array}\right.$,解得:$\frac{1}{ln3}$-$\frac{4}{3}$<k<$\frac{1}{2ln2}-1$,
故答案为:($\frac{1}{ln3}$-$\frac{4}{3}$,$\frac{1}{2ln2}-1$).

点评 本题考查了函数的单调性问题,考查导数的应用以及数形结合思想,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知数列{an}为等差数列,且a3=5,a5=9,数列{bn}的前n项和Sn=$\frac{2}{3}$bn+$\frac{1}{3}$.
(Ⅰ)求数列{an}和{bn}的通项公式;
(Ⅱ)设cn=an|bn|,求数列{cn}的前n项的和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设函数f(x)=ln(x+1)+a(x2-x),其中a∈R
(1)讨论函数f(x)极值点的个数,并说明理由;
(2)若任意x∈(0,+∞),f(x)>0成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设△ABC的三内角A、B、C的对边分别是a、b、c,且b(sinB-sinC)+(c-a)(sinA+sinC)=0
(Ⅰ)求角A的大小;
(Ⅱ)若a=$\sqrt{3}$,sinC=$\frac{{1+\sqrt{3}}}{2}$sinB,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=|x-1|+|x-5|,g(x)=$\sqrt{1+{x}^{2}}$.
(1)求f(x)的最小值;
(2)记f(x)的最小值为m,已知实数a,b满足a2+b2=6,求证:g(a)+g(b)≤m.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在平面直角坐标系,将曲线C1上的每一个点的横坐标保持不变,纵坐标缩短为原来的$\frac{1}{2}$,得到曲线C2,以坐标原点O为极点,x轴的正半轴为极轴,建立极坐标系,曲线C1的极坐标方程为ρ=2.
(Ⅰ)求曲线C2的参数方程;
(Ⅱ)过原点O且关于y轴对称点两条直线l1与l2分别交曲线C2于A、C和B、D,且点A在第一象限,当四边形ABCD的周长最大时,求直线l1的普通方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在平面直角坐标系中,已知点B(1,1),曲线C的参数方程为$\left\{\begin{array}{l}{x=2cosθ}\\{y=\sqrt{3}sinθ}\end{array}\right.$(θ为参数),以坐标原点为极点,x轴正半轴为极轴建立极坐标系,点A的极坐标为(4$\sqrt{2}$,$\frac{π}{4}$),直线l的极坐标方程为ρcos(θ-$\frac{π}{4}$)=a,且l过点A,过点B与直线l平行的直线为l1,l1与曲线C相交于两点M,N
(Ⅰ)求曲线C上的点到直线l距离的最小值
(Ⅱ)求|MN|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.如图,△AB1C1,△B1B2C2,△B2B3C3是三个边长为2的等边三角形,且有一条边在同一直线上,边B3C3上有5个不同的点P1,P2,P3,P4,P5,设${m_i}=\overrightarrow{A{C_2}}•\overrightarrow{A{P_i}}$(i=1,2,…,5),则m1+m2+…+m5=90.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.为了解甲、乙两厂的产品质量,采用分层抽样的方法从甲、乙两厂生产的产品中分别抽取14件和5件,测量产品中的微量元素x,y的含量(单位:毫克),如表是乙厂的5件产品的测量数据:
编号12345
x169178166175180
y7580777081
(1)已知甲厂生产的产品共有98件,求乙厂生产的产品数量;
(2)当产品中的微量元素x,y满足x≥175,且y≥75时,该产品为优等品.用上述样本数据估计乙厂生产的优等品的数量;
(3)从乙厂抽出的上述5件产品中,随机抽取2件,求抽取的2件产品中优等品数ξ的分布列及方差.

查看答案和解析>>

同步练习册答案