精英家教网 > 高中数学 > 题目详情
16.已知复数z满足z•i=2-i,i为虚数单位,则z=(  )
A.2-iB.1+2iC.-1+2iD.-1-2i

分析 把已知的等式变形,然后利用复数代数形式的乘除运算化简得答案.

解答 解:由z•i=2-i,得$z=\frac{2-i}{i}=\frac{(2-i)(-i)}{-{i}^{2}}=-1-2i$.
故选:D.

点评 本题考查复数代数形式的乘除运算,是基础的计算题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.一袋中有大小相同的4个红球和2个白球,给出下列结论:
①从中任取3球,恰有一个白球的概率是$\frac{3}{5}$;
②从中有放回的取球6次,每次任取一球,则取到红球次数的方差为$\frac{4}{3}$;
③从中有放回的取球3次,每次任取一球,则至少有一次取到红球的概率为$\frac{26}{27}$.
其中所有正确结论的序号是①②③.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.$1{,_{\;}}_{\;}\frac{2}{3}{,_{\;}}_{\;}\frac{1}{2}{,_{\;}}_{\;}\frac{2}{5},…$的一个通项公式是${a_n}=\frac{2}{n+1}$..

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知正项数列{an}满足:a1=3,(2n-1)an+2=(2n+1)an-1+8n2(n>1,n∈N*).
(1)求数列{an}的通项an
(2)设bn=$\frac{1}{a_n}$,求数列{bn}的前n项的和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知命题p:“?x∈[-5,0],a≥ex”,命题q:“?x∈R,x2+4x+a=0”,若“p∧q”是真命题,则实数a的取值范围是(  )
A.[e,4]B.[1,4]C.(4,+∞)D.(-∞,1]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知命题p:|x-1|≤2,命题q:-1<x≤3,则命题p是命题q成立的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.天气预报报导在今后的三天中,每一天下雨的概率均为60%,这三天中恰有两天下雨的概率是(  )
A.0.432B.0.6C.0.8D.0.288

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知tanα=-2,则$\frac{3sinα+cosα}{sinα-cosα}$的值等于$\frac{5}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在△ABC中,内角A,B,C的对边分别为a,b,c,已知角C为钝角,且cos(A-C)+cosB=$\frac{3\sqrt{5}}{5}$,c=$\frac{3\sqrt{5}}{5}$a
(1)求角A;
(2)若a=$\sqrt{10}$,D为AC边的中点,求BD的长.

查看答案和解析>>

同步练习册答案