【题目】已知数列{an}中, 的对称轴为 .
(1)试证明{2nan}是等差数列,并求{an}的通项公式;
(2)设{an}的前n项和为Sn , 求Sn .
【答案】
(1)证明:∵ 的对称轴为 .
∴an≠0, = ,化为:2n+1an+1﹣2nan=2,
∴{2nan}是等差数列,首项为2,公差为2.
∴2nan=2+2(n﹣1)=2n.
(2)解:由(1)可得:an= .
∴Sn=1+ + +…+ ,
= +…+ + ,
∴ =1+ + +…+ ﹣ = ﹣ =2﹣ ,
∴Sn=4﹣
【解析】(1)由于 的对称轴为 .可得an≠0, = ,化简整理即可证明.()由(1)可得:an= .利用“错位相减法”与等比数列的前n项和公式即可得出.
【考点精析】利用等差数列的通项公式(及其变式)和数列的前n项和对题目进行判断即可得到答案,需要熟知通项公式:或;数列{an}的前n项和sn与通项an的关系.
科目:高中数学 来源: 题型:
【题目】已知函数F(x)=xf(x),f(x)满足f(x)=f(﹣x),且当x∈(﹣∞,0]时,F'(x)<0成立,若 ,则a,b,c的大小关系是( )
A.a>b>c
B.c>a>b
C.c>b>a
D.a>c>b
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系xoy中,曲线C的参数方程为 (t为参数,a>0)以坐标原点O为极点,以x轴正半轴为极轴,建立极坐标系,已知直线l的极坐标方程为 .
(Ⅰ)设P是曲线C上的一个动点,当a=2时,求点P到直线l的距离的最小值;
(Ⅱ)若曲线C上的所有点均在直线l的右下方,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}满足a1=1,an+1=1﹣ ,其中n∈N* .
(Ⅰ)设bn= ,求证:数列{bn}是等差数列,并求出{an}的通项公式an;
(Ⅱ)设Cn= ,数列{CnCn+2}的前n项和为Tn , 是否存在正整数m,使得Tn< 对于n∈N*恒成立,若存在,求出m的最小值,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若曲线C1:x2+y2﹣4x=0与曲线C2:y(y﹣mx﹣x)=0有四个不同的交点,则实数m的取值范围是( )
A.(﹣ , )
B.(﹣ ,0)∪(0, )
C.[﹣ , ]
D.(﹣∞,﹣ )∪( ,+∞)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】以双曲线 (a>0,b>0)上一点M为圆心的圆与x轴恰相切于双曲线的一个焦点F,且与y轴交于P、Q两点.若△MPQ为正三角形,则该双曲线的离心率为( )
A.4
B.
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,以原点为极点,x轴为极轴建立极坐标系,曲线C1的方程为 (θ为参数),曲线C2的极坐标方程为C2:ρcosθ+ρsinθ=1,若曲线C1与C2相交于A、B两点.
(1)求|AB|的值;
(2)求点M(﹣1,2)到A、B两点的距离之积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随着经济模式的改变,微商和电商已成为当今城乡一种新型的购销平台.已知经销某种商品的电商在任何一个销售季度内,每售出1吨该商品可获利润0.5万元,未售出的商品,每1吨亏损0.3万元.根据往年的销售经验,得到一个销售季度内市场需求量的频率分布直方图如右图所示.已知电商为下一个销售季度筹备了130吨该商品.现以x(单位:吨,100≤x≤150)表示下一个销售季度的市场需求量,T(单位:万元)表示该电商下一个销售季度内经销该商品获得的利润. (Ⅰ)视x分布在各区间内的频率为相应的概率,求P(x≥120)
(Ⅱ)将T表示为x的函数,求出该函数表达式;
(Ⅲ)在频率分布直方图的市场需求量分组中,以各组的区间中点值(组中值)代表该组的各个值,并以市场需求量落入该区间的频率作为市场需求量取该组中值的概率(例如x∈[100,110),则取x=105,且x=105的概率等于市场需求量落入100,110)的频率),求T的分布列及数学期望E(T).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com