精英家教网 > 高中数学 > 题目详情

【题目】如图,在三棱柱中,侧棱垂直于底面, 分别为 的中点.

1求证:平面平面

2求证:在棱上存在一点,使得平面平面

3求三棱锥的体积

【答案】(1)见解析;(2)见解析;(3).

【解析】试题分析:(1)证明ABB1BCC1,可得平面ABEB1BCC1;(2使得平面,只需证明四边形FGEC1为平行四边形,可得C1FEG;(3)利用VEABC=SABCAA1,可求三棱锥E﹣ABC的体积.

试题解析:

1由侧棱垂直于底面, 平面,得,又

点,所以平面,从而平面平面

2)取中点,连接 ,由的中点,知

平面,得平面

因为 ,所以四边形为平行四边形,

平面,得平面,而点,

平面平面,即存在中点,使得平面平面

3)点到底面的距离即为侧棱长,在中, ,所以

所以.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知点,圆,点在圆上运动.

)如果是等腰三角形,求点的坐标

)如果直线与圆的另一个交点为,且,求直线的方程

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直角梯形中, ,直角梯形通过直角梯形以直线为轴旋转得到,且使得平面平面 为线段的中点, 为线段上的动点.

)求证:

)当点满足时,求证:直线平面

)当点是线段中点时,求直线和平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于函数f(x)=x3cos3(x+ ),下列说法正确的是(
A.f(x)是奇函数且在(﹣ )上递增
B.f(x)是奇函数且在(﹣ )上递减
C.f(x)是偶函数且在(0, )上递增
D.f(x)是偶函数且在(0, )上递减

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A、B、C所对的边分别为a、b、c,f (x)=sin(2x﹣A) (x∈R),函数f(x)的图象关于点( ,0)对称.
(1)当x∈(0, )时,求f (x)的值域;
(2)若a=7且sinB+sinC= ,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,点是曲线上的动点, 到点的距离与到直线的距离相等.

(Ⅰ)求曲线的方程;

(Ⅱ)设是曲线上的点,点在曲线上,直线分别与轴交于点,且,求直线的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|2x﹣1|+|2x+a|,g(x)=x+3.
(1)当a=﹣2时,求不等式f(x)<g(x)的解集;
(2)设a>﹣1,且当 时,f(x)≤g(x),求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2(ex+ex)﹣(2x+1)2(e2x+1+e2x1),则满足f(x)>0的实数x的取值范围为(
A.(﹣1,﹣
B.(﹣∞,﹣1)
C.(﹣ ,+∞)
D.(﹣∞,﹣1)∪(﹣ ,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义域为R的函数fx)=是奇函数.

(1)求实数ab的值;

(2)判断并用定义证明fx)在(-∞,+∞)上的单调性;

(3)若对任意的x∈[1,2],存在t∈[1,2]使得不等式fx2+tx)+f(2x+m)>0成立,求实数m的取值范围.

查看答案和解析>>

同步练习册答案