精英家教网 > 高中数学 > 题目详情
如图,在等腰梯形ABCD中,对角线AC⊥BD,且相交于点O,E是AB边的中点,EO的延长线交CD于F.
(1)求证:EF⊥CD;
(2)若∠ABD=30°,求证S△ODF:S△ODC=1:4.
考点:相似三角形的性质
专题:选作题,立体几何
分析:(1)先证明△AOB≌△DOC,从而得出∠ODC=∠OAB,进而可以证明结论;
(2)先证明△DOC∽△DFO,利用面积比等于相似比的平方比即可证明.
解答: 证明:(1)∵△AOB为直角三角形,且E 为AB边的中点,∴EA=EB,∴∠EAO=∠EOA,∠EOB=∠EBO,
又△AOB≌△DOC,∴∠ODC=∠OAB,
∠EOB=∠DOF(对顶角),∴∠ODC+∠DOF=90°
∴∠DFO=90°
∴EF⊥CD
(2)∵∠ABD=30°∴∠EOB=∠DOF=30°,
∴在Rt△DOF中,DF=
1
2
OD,△DOC∽△DFO,
∴根据面积比等于相似比的平方比,知S△ODF:S△ODC=1:4
点评:本小题主要考查相似三角形的性质,考查三角形全等证明,考查学生分析解决问题的能力,比较基础.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

双曲线C:x2-y2=λ(λ>0)的离心率是
 
;渐近线方程是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C的对边分别为a,b,c,若bcosA+acosB=-2ccosC.
(1)求角C的大小;
(2)若b=2a,且△ABC的面积为2
3
,求边c的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

由于电子技术的飞速发展,某电子产品的成本不断降低,若每隔5年该电子产品的价格降低
1
3
,则现在价格为2700元的该电子产品经过15年价格应降为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

命题“若∠C=90°,则△ABC是直角三角形”的否命题的真假性为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在平行四边形ABCD中,AB=4,AD=2,∠BAD=60°,若
AM
=
1
4
AB
+m
AD
(0<m<1),则
MA
MB
的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

不等式(1-x)(2x+1)≤0的解集为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在下列命题中,假命题是(  )
A、存在x∈R,lgx=0
B、存在x∈R,tanx=0
C、任意x∈R,2x>0
D、任意x∈R,x3>0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A(0,-1),B(-2a,0),C(1,1),D(2,4),若直线AB与直线CD垂直,则a的值为
 

查看答案和解析>>

同步练习册答案