【题目】某种零件按质量标准分为1,2,3,4,5五个等级,现从一批该零件巾随机抽取20个,对其等级进行统计分析,得到频率分布表如下
等级 | 1 | 2 | 3 | 4 | 5 |
频率 | 0.05 | m | 0.15 | 0.35 | n |
(1)在抽取的20个零件中,等级为5的恰有2个,求m,n;
(2)在(1)的条件下,从等级为3和5的所有零件中,任意抽取2个,求抽取的2个零件等级恰好相同的概率.
【答案】
(1)解:由频率分布表得 0.05+m+0.15+0.35+n=1,
即 m+n=0.45.
由抽取的20个零件中,等级为5的恰有2个,
得 .
所以m=0.45﹣0.1=0.35.
(2)解:由(1)得,等级为3的零件有3个,记作x1,x2,x3;等级为5的零件有2个,
记作y1,y2.从x1,x2,x3,y1,y2中任意抽取2个零件,所有可能的结果为:(x1,x2),(x1,x3),(x1,y1),(x1,y2),(x2,x3),(x2,y1),(x2,y2),(x3,y1),(x3,y2),(y1,y2)
共计10种.
记事件A为“从零件x1,x2,x3,y1,y2中任取2件,其等级相等”.
则A包含的基本事件为(x1,x2),(x1,x3),(x2,x3),(y1,y2)共4个.
故所求概率为 .
【解析】(1)通过频率分布表得推出m+n=0.45.利用等级系数为5的恰有2件,求出n,然后求出m.(2)根据条件列出满足条件所有的基本事件总数,“从x1 , x2 , x3 , y1 , y2 , 这5件日用品中任取两件,等级系数相等”的事件数,求解即可.
科目:高中数学 来源: 题型:
【题目】已知集合A={x|1≤x≤7},B={x|﹣2m+1<x<m},全集为实数集R.
(1)若m=5,求A∪B,(RA)∩B;
(2)若A∩B=A,求m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设数列的前项和为,且.
(1)求证:数列为等比数列;
(2)设数列的前项和为,求证: 为定值;
(3)判断数列中是否存在三项成等差数列,并证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆M: =1(a>b>0)的离心率为 ,点A(a,0),B(0,﹣b),原点O到直线AB的距离为 .
(Ⅰ)求椭圆M的方程;
(Ⅱ)设直线l:y=2x+m与椭圆M相交于C、D不同两点,经过线段CD上点E的直线与y轴相交于点P,且有 =0,| |=| |,试求△PCD面积S的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】关于x的不等式ax2+(a﹣2)x﹣2≥0(a∈R)
(1)已知不等式的解集为(﹣∞,﹣1]∪[2,+∞),求a的值;
(2)解关于x的不等式ax2+(a﹣2)x﹣2≥0.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知a,b,c分别为△ABC三内角A,B,C的对边,且满足b+ccosA=c+acosC.
(Ⅰ)求角A的大小;
(Ⅱ)若△ABC的面积为 ,求△ABC的周长的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,直三棱柱(侧棱与底面垂直的棱柱)ABC﹣A1B1C1中,点G是AC的中点.
(1)求证:B1C∥平面 A1BG;
(2)若AB=BC, ,求证:AC1⊥A1B.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com