13£®ÒÑ֪ʵÊýx£¬yÂú×ãÔ¼ÊøÌõ¼þ$\left\{\begin{array}{l}x¡Ý1\\ y¡Ýx-1\\ x+y¡Ü4\end{array}\right.$£¬Ä¿±êº¯Êýz=x+y£¬Ôòµ±z=3ʱ£¬x2+y2µÄÈ¡Öµ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®$[\frac{{3\sqrt{2}}}{2}£¬\sqrt{5}]$B£®$[\frac{{3\sqrt{2}}}{2}£¬5]$C£®$[\frac{9}{2}£¬5]$D£®$[\sqrt{5}£¬\frac{9}{2}]$

·ÖÎö ×÷³ö²»µÈʽ×é¶ÔÓ¦µÄƽÃæÇøÓò£¬ÀûÓÃÄ¿±êº¯ÊýµÄ¼¸ºÎÒâÒ壬¼´¿ÉµÃµ½½áÂÛ

½â´ð ½â£º×÷³ö²»µÈʽ¶ÔÓ¦µÄƽÃæÇøÓò£¬
µ±Ä¿±êº¯Êýz=x+y£¬Ôòµ±z=3ʱ£¬¼´x+y=3ʱ£¬×÷³ö´ËʱµÄÖ±Ïߣ¬
Ôòx2+y2µÄ¼¸ºÎÒâÒåΪ¶¯µãP£¨x£¬y£©µ½Ô­µãµÄ¾àÀëµÄƽ·½£¬
µ±Ö±Ïßx+y=3ÓëÔ²x2+y2=r2ÏàÇÐʱ£¬¾àÀë×îС£¬
¼´Ô­µãµ½Ö±Ïßx+y=3µÄ¾àÀëd=$\frac{3}{\sqrt{2}}$£¬¼´×îСֵΪd2=$\frac{9}{2}$£¬
µ±Ö±Ïßx+y=3ÓëÔ²x2+y2=r2ÏཻÓëµãB»òCʱ£¬¾àÀë×î´ó£¬
ÓÉ$\left\{\begin{array}{l}{x=1}\\{x+y=3}\end{array}\right.$£¬½âµÃx=1£¬y=2£¬¼´B£¨1£¬2£©£¬
ÓÉ$\left\{\begin{array}{l}{x+y=3}\\{x-y=1}\end{array}\right.$£¬½âµÃx=2£¬y=1£¬¼´C£¨2£¬1£©
´Ëʱr2=x2+y2=22+12=5£¬
¹ÊÑ¡£ºC£®

µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÏßÐԹ滮µÄÓ¦Óã¬ÀûÓÃÄ¿±êº¯ÊýµÄ¼¸ºÎÒâÒ壬½áºÏÊýÐνáºÏµÄÊýѧ˼ÏëÊǽâ¾ö´ËÀàÎÊÌâµÄ»ù±¾·½·¨£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®ÔÚÏÂÁÐÇø¼äÖУ¬º¯Êýf£¨x£©=lgx-$\frac{1}{x}$µÄÁãµãËùÔÚµÄÇø¼äÊÇ£¨¡¡¡¡£©
A£®£¨0£¬1£©B£®£¨1£¬2£©C£®£¨2£¬3£©D£®£¨3£¬4£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

4£®ÓɵãP£¨3£¬4£©ÒýÔ²x2+y2=16µÄÇÐÏß³¤ÊÇ3£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®ÒÑÖªº¯Êýf£¨x£©=x3-3ax£¨a¡ÊR£©£®
£¨¢ñ£©ÇóÇúÏßy=f£¨x£©Ôڵ㣨0£¬f£¨0£©£©´¦µÄÇÐÏß·½³Ì£» 
£¨¢ò£©Èôº¯Êýf£¨x£©ÔÚÇø¼ä£¨-1£¬2£©ÉϽöÓÐÒ»¸ö¼«Öµµã£¬ÇóʵÊýaµÄÈ¡Öµ·¶Î§£»
£¨¢ó£©Èôa£¾1£¬ÇÒ·½³Ìf£¨x£©=a-xÔÚÇø¼ä[-a£¬0]ÉÏÓÐÁ½¸ö²»ÏàµÈµÄʵÊý¸ù£¬ÇóʵÊýaµÄ×îСֵ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

8£®ÈçͼÊǺ¯Êýf£¨x£©=cos£¨¦Ðx+¦Õ£©£¨0£¼¦Õ£¼$\frac{¦Ð}{2}$£©µÄ²¿·ÖͼÏó£¬Ôòf£¨3x0£©=-$\frac{\sqrt{3}}{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®ÒÑÖªp1£ºÖ±Ïßl1£ºx-y-1=0ÓëÖ±Ïßl2£ºx+ay-2=0ƽÐУ¬q£ºa=-1£¬ÔòpÊÇqµÄ£¨¡¡¡¡£©
A£®³äÒªÌõ¼þB£®³ä·Ö²»±ØÒªÌõ¼þ
C£®±ØÒª²»³ä·ÖÌõ¼þD£®¼È²»³ä·ÖÒ²²»±ØÒªÌõ¼þ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®º¯Êýf£¨x£©=$\sqrt{x+1}$+lg£¨1-x£©µÄ¶¨ÒåÓòΪ£¨¡¡¡¡£©
A£®[-1£¬1]B£®[-1£¬+¡Þ£©C£®[-1£¬1£©D£®£¨-¡Þ£¬1£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®ÏÂÁÐË«ÇúÏßÖУ¬½¹µãÔÚxÖáÉÏÇÒ½¥½üÏß·½³ÌΪy=¡À$\frac{1}{4}$xµÄÊÇ£¨¡¡¡¡£©
A£®x2-$\frac{{y}^{2}}{16}$=1B£®$\frac{{x}^{2}}{16}$-y2=1C£®$\frac{{y}^{2}}{16}$-x2=1D£®y2-$\frac{{x}^{2}}{16}$=1

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

3£®ÒÑÖª¼¯ºÏA={-3£¬-2£¬-1£¬0£¬1£¬2}£¬B={x|x2¡Ü3}£¬ÔòA¡ÉB=£®£¨¡¡¡¡£©
A£®{0£¬2}B£®{-1£¬0£¬1}C£®{-3£¬-2£¬-1£¬0£¬1£¬2}D£®[0£¬2]

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸