【题目】对于复数(为虚数单位),定义,给出下列命题:①对任何复数z,都有,等号成立的充要条件是;②:③若,则:④对任何复数,不等式恒成立,其中真命题的个数是( )
A.1B.2C.3D.4
【答案】C
【解析】
在①中,当z=0时,‖z‖=0;反之,当‖z‖=0时,z=0;在②中,z=a+bi,a﹣bi,从而‖z‖=‖‖=|a|+|b|;在③中,当z1=2+3i,z2=3+2i时,不成立;④由绝对值的性质得到‖z1﹣z3‖≤‖z1﹣z2‖+‖z2﹣z3‖恒成立.
由复数z=a+bi(a、b∈R,i为虚数单位),定义‖z‖=|a|+|b|,知:
在①中,对任何复数,都有‖z‖≥0,
当z=0时,‖z‖=0;反之,当‖z‖=0时,z=0,
∴等号成立的充要条件是z=0,故①成立;
在②中,∵z=a+bi,a﹣bi,∴‖z‖=‖‖=|a|+|b|,故②成立;
在③中,当z1=2+3i,z2=3+2i时,‖z1‖=‖z2‖,但z1≠±z2,故③错误;
④对任何复数z1,z2,z3,
设z1=a1+b1i,z2=a2+b2i,z3=a3+b3i,
则‖z1﹣z3‖=|a1﹣a3|+|b1﹣b3|,
‖z1﹣z2‖+‖z2﹣z3‖=|a1﹣a2|+|a2﹣a3|+|b1﹣b2|+|b2﹣b3|,
|a1﹣a3|≤|a1﹣a2|+|a2﹣a3|,
|b1﹣b3|≤|b1﹣b2|+|b2﹣b3|,
∴‖z1﹣z3‖≤‖z1﹣z2‖+‖z2﹣z3‖恒成立.故④成立.
故选:C.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x2+2alnx.
(1)若函数f(x)的图象在(2,f(2))处的切线斜率为1,求实数a的值;
(2)若函数在[1,2]上是减函数,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,直线的倾斜角为,且经过点.以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,直线,从原点O作射线交于点M,点N为射线OM上的点,满足,记点N的轨迹为曲线C.
(Ⅰ)求出直线的参数方程和曲线C的直角坐标方程;
(Ⅱ)设直线与曲线C交于P,Q两点,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,已知曲线的参数方程为(为参数).以为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(1)求曲线的极坐标方程和曲线的直角坐标方程;
(2)设动直线:分别与曲线,相交于点,,求当为何值时,取最大值,并求的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,将椭圆上每一点的横坐标保持不变,纵坐标变为原来的一半,得曲线C,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,直线l的极坐标方程为.
写出曲线C的普通方程和直线l的直角坐标方程;
已知点且直线l与曲线C交于A、B两点,求的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com