精英家教网 > 高中数学 > 题目详情
10.已知函数f(x)=$\frac{2mx-{m}^{2}+1}{{x}^{2}+1}$(x∈R).
(1)当m=1时,求曲线y=f(x)在点(2,f(2))处的切线方程;
(2)当m=2时,求函数f(x)的单调区间与极值.

分析 (1)求出函数的导数,计算f(2),f′(2),求出切线方程即可;
(2)求出函数的导数,解关于导函数的不等式,求出函数的单调区间,从而求出函数的极值即可.

解答 解:(1)当m=1时,f(x)=$\frac{2x}{{x}^{2}+1}$,f(2)=$\frac{4}{5}$,
又因为f′(x)=$\frac{2(1{-x}^{2})}{{{(x}^{2}+1)}^{2}}$=,则f′(2)=-$\frac{6}{25}$.
所以曲线y=f(x)在点(2,f(2))处的切线方程为
y-$\frac{4}{5}$=-$\frac{6}{25}$(x-2),即6x+25y-32=0.
(2)f′(x)=$\frac{-2(x-m)(mx+1)}{{{(x}^{2}+1)}^{2}}$,m=2时
令f′(x)=0,得到x1=-$\frac{1}{2}$,x2=2,
当x变化时,f′(x),f(x)的变化情况如下表:

x(-∞,-$\frac{1}{2}$)-$\frac{1}{2}$(-$\frac{1}{2}$,2)2(2,+∞)
f′(x)-0+0-
f(x)递减极小值递增极大值递减
从而f(x)在区间(-∞,-$\frac{1}{2}$),(2,+∞)内为减函数,在区间(-$\frac{1}{2}$,2)内为增函数,
故函数f(x)在点x1=-$\frac{1}{2}$处取得极小值f(-$\frac{1}{2}$),且f(-$\frac{1}{2}$)=-4,
函数f(x)在点x2=2处取得极大值f(2),且f(2)=1.

点评 本题考查了切线方程问题,考查函数的单调性、极值问题,考查导数的应用,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.函数$y=sin2x-\sqrt{3}cos2x$的图象的一条对称轴方程为(  )
A.$x=\frac{π}{12}$B.$x=-\frac{π}{12}$C.$x=\frac{π}{3}$D.$x=-\frac{π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知:如图所示,AB∥CD,OD2=BO•OE.求证:AD∥CE

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=3x,g(x)=|x+a|-3,其中a∈R.
(Ⅰ)若函数h(x)=f[g(x)]的图象关于直线x=2对称,求a的值;
(Ⅱ)给出函数y=g[f(x)]的零点个数,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,在三棱锥A-BCD中,底面BCD是边长为2的等边三角形,侧棱AB=AD=$\sqrt{2}$,AC=2,O、E、F分别是BD、BC、AC的中点.
(1)求证:EF∥平面ABD;
(2)求证:AO⊥平面BCD;
(3)求异面直线AB与CD所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.在△ABC中,角A,B,C所对的边分别为a,b,c,且满足cos$\frac{A}{2}$=$\frac{2\sqrt{5}}{5}$,$\overrightarrow{AB}•\overrightarrow{AC}$=3,b+c=6,则边a=(  )
A.2$\sqrt{2}$B.2$\sqrt{3}$C.2$\sqrt{5}$D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知椭圆C:$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{9}$=1,点M与C的焦点不重合,若M关于C的焦点的对称点分别为A,B,线段MN的中点在C上,则|AN|+|BN|=16.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知双曲线$c:\frac{y^2}{a^2}-\frac{x^2}{b^2}(a>0,b>0)$的渐近线方程为$y=±\frac{3}{4}x$,且其焦点为(0,5),则双曲线C的方程(  )
A.$\frac{{y}^{2}}{9}$-$\frac{{x}^{2}}{16}$=1B.$\frac{x^2}{16}-\frac{y^2}{9}=1$C.$\frac{x^2}{3}-\frac{y^2}{4}=1$D.$\frac{x^2}{4}-\frac{y^2}{3}=1$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,已知△ABC和△EBC是边长为2的正三角形,平面EBC⊥平 面ABC,AD⊥平面ABC,且$AD=2\sqrt{3}$.
(Ι)证明:AD∥平面EBC;
(II)求三棱锥E-ABD的体积.

查看答案和解析>>

同步练习册答案