精英家教网 > 高中数学 > 题目详情

【题目】在如图所示的多面体中, 为直角梯形, ,四边形为等腰梯形, ,已知 . 

(Ⅰ)求证:平面平面

(Ⅱ)求直线与平面所成角的正弦值.

【答案】(1)见解析(2)

【解析】试题分析:(1)连接在等腰梯形中可证得从而再证 ,所以平面平面.(2)先建立空间直角坐标系求出面的法向量,直线与面所成角的正弦值即为向量与面法向量夹角的余弦值的绝对值.

(Ⅰ)证明:取中点,连接 ,可知

平面

, 又

,∴平面 平面

∴平面平面

(Ⅱ)如图,作,则平面,过 点,

故以为原点,分别以 的方向为轴、轴、轴的正方向建立空间平面直角坐标系,依题意可得 ,所以

为平面EAC的法向量,则

不妨设

可得

所以

直线CF与平面EAC所成角的正弦值为. 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有刍甍,下广三丈,袤四丈,上袤二丈,无广,高二丈,问积几何?”其意思为:“今有底面为矩形的屋脊状的锲体,下底面宽3丈,长4丈,上棱长2丈,高2丈,问:它的体积是多少?”已知1丈为10尺,该锲体的三视图如图所示,则该锲体的体积为( )

A. 10000立方尺 B. 11000立方尺 C. 12000立方尺 D. 13000立方尺

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知△ABC的三个顶点分别为A(2,3),B(1,﹣2),C(﹣3,4),求
(1)BC边上的中线AD所在的直线方程;
(2)△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一儿童游乐场拟建造一个“蛋筒”型游乐设施,其轴截面如图中实线所示. 是等腰梯形, 米, 的延长线上, 为锐角). 圆都相切,且其半径长为米. 是垂直于的一个立柱,则当的值设计为多少时,立柱最矮?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆)的左右焦点分别为,离心率.过的直线交椭圆于两点,三角形的周长为.

(1)求椭圆的方程;

(2)若弦,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

(1)若,求在区间[0,3]上的最大值;

(2)若,写出的单调区间;

(3)若存在,使得方程有三个不相等的实数解,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆 ),设为圆轴负半轴的交点,过点作圆的弦,并使弦的中点恰好落在轴上.

(Ⅰ)求点的轨迹的方程;

(Ⅱ)延长交曲线于点,曲线在点处的切线与直线交于点,试判断以点为圆心,线段长为半径的圆与直线的位置关系,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列函数中,既是偶函数又在区间(﹣∞,0)上单调递增的是(  )
A.f(x)=
B.f(x)=+1
C.f(x)=
D.f(x)=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】求满足下列条件的直线的方程:
(1)经过两条直线2x﹣3y+10=0和3x+4y﹣2=0的交点,且垂直于直线3x﹣2y+4=0;
(2)经过两条直线2x+y﹣8=0和x﹣2y+1=0的交点,且平行于直线4x﹣3y﹣7=0.

查看答案和解析>>

同步练习册答案