精英家教网 > 高中数学 > 题目详情
8.已知函数f(x)=log2[x2-2(2a-1)x+8],a∈R.
(1)若f(x)在(a,+∞)内为增函数,求实数a的取值范围;
(2)若关于x的方程f(x)=1-$lo{g}_{\frac{1}{2}}$(x+3)在[1,3]内有唯一实数,求实数a的取值范围.

分析 (1)函数f(x)在(a,+∞﹚上为增函数,可得$\left\{\begin{array}{l}{2a-1≤a}\\{{a}^{2}-2a(2a-1)+8≥0}\end{array}\right.$,即可求实数a的取值范围;
(2)原方可化为x2-2(2a-1)x+8=2x+6>0,即4a=x+$\frac{2}{x}$,x∈[1,3],由双勾图形,求实数a的取值范围.

解答 解:(1)∵函数f(x)在(a,+∞﹚上为增函数,
∴$\left\{\begin{array}{l}{2a-1≤a}\\{{a}^{2}-2a(2a-1)+8≥0}\end{array}\right.$,∴-$\frac{4}{3}$≤a≤1;
(2)原方可化为x2-2(2a-1)x+8=2x+6>0,
即4a=x+$\frac{2}{x}$,x∈[1,3],由双勾图形可知:3<4a≤$\frac{11}{3}$或4a=2$\sqrt{2}$,
即$\frac{3}{4}$<a≤$\frac{11}{12}$或a=$\frac{\sqrt{2}}{2}$.

点评 本题考查复合函数的单调性,考查方程解的研究,考查学生分析解决问题的能力,正确转化是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=$\frac{ln(ex)}{x}$,g(x)=$\frac{3}{8}$x2-2x+1+xf(x).
(1)证明f(x)≤1在其定义域内恒成立;
(2)若函数y=g(x)在[et,+∞)(t∈Z)上有零点,求t的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知抛物线C:x2=2y的焦点为F,P为抛物线C上任意一点,点M(-2,4m-2m+4),m∈R,则|MP|+|PF|的最小值为(  )
A.$\frac{5}{2}$B.$\frac{13}{4}$C.$\frac{9}{2}$D.$\frac{17}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.直线l1:2x-y+3=0,l2:4x+8y+3=0的位置关系为(  )
A.相交不垂直B.垂直C.平行不重合D.重合

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=$\frac{{x}^{2}+bx+a}{x}$(a∈R+).
(1)若函数f(x)是奇函数,求b的值;
(2)在(1)的条件下求函数f(x)在x∈[2,±∞)上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知sin($\frac{π}{4}$-θ)=$\frac{5}{13}$,0<θ<$\frac{π}{4}$,求cos2θ,cos($\frac{π}{4}$+θ)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知向量$\overrightarrow{m}$=(cos$\frac{3x}{2}$,sin$\frac{3x}{2}$),$\overrightarrow{n}$=(-sin$\frac{x}{2}$,-cos$\frac{x}{2}$).
(I)若|$\overrightarrow{m}$+$\overrightarrow{n}$|=$\sqrt{3}$.且x∈[$\frac{π}{2}$,π],求x的值;
(Ⅱ)函数f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$+|$\overrightarrow{m}$+$\overrightarrow{n}$|2,在△ABC中,a,b,c分别是三个内角A,B,C的对边,且f($\frac{π}{4}$-$\frac{A}{2}$)=$\frac{1}{2}$,a=4,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=x2-x+1,g(x)=2x4-18x2+12x+68.
(1)如果不等式f(x)≥ax2+a对任意的x∈R恒成立,求实数a的取值范围;
(2)是否存在正实数M,使得不等式f(x)+$\sqrt{g(x)}$≥M对任意的x∈R恒成立,求出M的最大值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知数列{an}中a1=1,nan=(n+1)an+1,则a2016=$\frac{1}{2016}$.

查看答案和解析>>

同步练习册答案