精英家教网 > 高中数学 > 题目详情

设集合A={1,2,3,4},集合B={-1,-2},设映射f:A→B.如果集合B中的元素都是A中元素在f下的象,那么这样的映射f有


  1. A.
    16个
  2. B.
    14个
  3. C.
    12个
  4. D.
    8个
B
分析:先求出映射f:A→B的个数和集合B中的元素不都是A中元素在f下的象的映射的个数,从而得到集合B中的元素都是A中元素在f下的象的映射的个数.
解答:∵集合A中的元素1,2,3,4各有2种对应情况,
∴映射f:A→B的个数是2×2×2×2=16个.
∵集合B中的元素不都是A中元素在f下的象的映射有2个,
∴集合B中的元素都是A中元素在f下的象的映射一共有16-2=14个.
故选B.
点评:本题考查映射的概念和应用,解题时要认真审题,仔细求解,是一道基础题;
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

1、设集合A={1,2,3},满足B=A∩B的集合B的个数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合A={1,2},B={1,2,3},分别从集合A和B中随机取一个数a和b.
(Ⅰ)若向量
m
=(a,b),
n
=(1,-1)
,求向量
m
n
的夹角为锐角的概率;
(Ⅱ) 记点P(a,b),则点P(a,b)落在直线x+y=n上为事件Cn(2≤n≤5,n∈N),求使事件Cn的概率最大的n.

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合A={1,2},B={1,2,3},分别从集合A和B中随机取一个数a和b,确定平面上的一个点P(a,b),记“点P(a,b)落在直线x+y=3上”为事件C,则C的概率为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合A={1,2,3},B={2,3,4,5},则A∩B=
{2,3}
{2,3}

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合A={1,2,3,4},B={3,4,5},则满足S⊆A且S∩B≠∅,试写出满足条件的所有集合S有
12
12
个.

查看答案和解析>>

同步练习册答案