精英家教网 > 高中数学 > 题目详情

【题目】某校高三年级有男生人,编号为;女生人,编号为.为了解学生的学习状态,按编号采用系统抽样的方法从这名学生中抽取人进行问卷调查,第一组抽到的号码为,现从这名学生中随机抽取人进行座谈,则这人中既有男生又有女生的概率是(

A.B.C.D.

【答案】C

【解析】

根据系统抽样的方法分析抽取出来的学生编号,再分析其中男女生的个数,再利用排列组合的方法求解概率即可.

由题意知,抽取的学生编号成等差数列,首项为10,公差为.

故抽取的10人中男生有10,70,130,190,4个号码,其余的6人为女生.

即抽到的10人中,有男生4,女生6,

再从这10位学生中随机抽取2人座谈,

基本事件总数,

2人中既有男生又有女生包含的基本事件个数,

2人中既有男生又有女生的概率.

故选:C

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某学校高三年级有两个自习教室,甲、乙、丙名学生各自随机选择其中一个教室自习,则甲、乙两人不在同一教室上自习的概率为________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆()的左、右焦点分别是,点的上顶点,点上,,且.

1)求的方程;

2)已知过原点的直线与椭圆交于两点,垂直于的直线且与椭圆交于两点,若,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】新疆在种植棉花有着得天独厚的自然条件,土质呈碱性,夏季温差大,阳光充足,光合作用充分,生长时间长,这种环境下种植的棉花绒长品质好产量髙,所以新疆棉花举世闻名.每年五月份,新疆地区进入灾害天气高发期,灾害天数对当年棉花产量有着重要影响,根据过去五年的数据统计,得到相关数据如下表:

灾害天气天数()

2

3

4

5

8

棉花产量(/公顷)

3.2

2.4

2

1.9

1.7

根据以上数据,技术人员分别借助甲乙两种不同的回归模型,得到两个回归方程,

方程甲:,方程乙:.

1)为了评价两种模型的拟合效果,完成以下任务: 完成下表;(计算结果精确到0.1)

②分别计算模型甲与模型乙的残差平方和,并比铰的大小,判断哪个模型拟合效果更好?

灾害天气天数()

2

3

4

5

8

棉花产量(吨公顷)

3.2

2.4

2

1.9

1.7

模型甲

估计值

2.4

2.1

1.6

残差

0

0.1

模型乙

估计值

2.3

2

1.9

残差

0.1

0

0

2)根据天气预报,今年五月份新疆市灾害天气是6天的概率是0.5,灾害天气是7天的概率为0.4,灾害天气是10天的概率为0.1,若何女士在新疆市承包了15公顷地种植棉花,请你根据第(1)问中拟合效果较好的模型估计一下何女士今年棉花的产量.(计算过程中所有结果精确到0.01)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】重庆市的新高考模式为,其中“3”是指语文、数学、外语三门必步科目:“1”是指物理、历史两门科目必选且只选一门;“2”是指在政治、地理、化学、生物四科中必须任选两门,这样学生的选科就可以分为两类:物理类与历史类,比如物理类有:物理+化学+生物,物理+化学+地理,物理+化学+政治.物理+政治+地理,物理+政治+生物,物理+生物+地理.重庆某中学高一学生共1200人,其中男生650人,女生550人,为了适应新高考,该校高一的学生在3月份进行了的选科,选科情况部分数据如下表所示:(单位:人)

性别

物理类

历史类

合计

男生

590

女生

240

合计

900

1)请将题中表格补充完整,并判断能否有99%把握认为是否选择物理类与性别有关

2)已知高一9班和10班选科结果都只有四种组合:物理+化学+生物,物理+化学+地理,政治+历史+地理,政治+历史+生物.现用数字1234依次代表这四种组合,两个班的选科数据如下表所示(单位:人).

理化生

理化地

政史地

政史生

班级总人数

9

18

18

12

12

60

10

24

12

18

6

60

现分别从两个班各选一人,记他们的选科结果分别为,令,用频率代表概率,求随机变量的分布列和期望.(参考数据:

附:

0.050

0.025

0.010

0.005

3.841

5.024

6.635

7.879

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂生产某种产品,为了控制质量,质量控制工程师要在产品出厂前对产品进行检验.现有)份产品,有以下两种检验方式:(1)逐份检验,则需要检验次;(2)混合检验,将这份产品混合在一起作为一组来检验.若检测通过,则这份产品全部为正品,因而这份产品只要检验一次就够了;若检测不通过,为了明确这份产品究竟哪几份是次品,就要对这份产品逐份检验,此时这份产品的检验次数总共为次.假设在接受检验的样本中,每份样本的检验结果是正品还是次品都是独立的,且每份样本是次品的概率为

1)如果,采用逐份检验方式进行检验,求检测结果恰有两份次品的概率;

2)现对份产品进行检验,运用统计概率相关知识回答:当满足什么关系时,用混合检验方式进行检验可以减少检验次数?

3)①当)时,将这份产品均分为两组,每组采用混合检验方式进行检验,求检验总次数的数学期望;

②当,且)时,将这份产品均分为组,每组采用混合检验方式进行检验,写出检验总次数的数学期望(不需证明).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2019年庆祝中华人民共和国成立70周年阅兵式彰显了中华民族从站起来、富起来迈向强起来的雄心壮志.阅兵式规模之大、类型之全均创历史之最,编组之新、要素之全彰显强军成就.装备方阵堪称“强军利刃”“强国之盾”,见证着人民军队迈向世界一流军队的坚定步伐.此次大阅兵不仅得到了全中国人的关注,还得到了无数外国人的关注.某单位有6位外国人,其中关注此次大阅兵的有5位,若从这6位外国人中任意选取2位做一次采访,则被采访者都关注了此次大阅兵的概率为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】小明和父母都喜爱《中国好声音》这栏节目,日晚在鸟巢进行中国好声音终极决赛,四强选手分别为李荣浩战队的邢晗铭,那英战队的斯丹曼簇,王力宏战队的李芷婷,庾澄庆战队的陈其楠,决赛后四位选手相应的名次为,某网站为提升娱乐性,邀请网友在比赛结束前对选手名次进行预测.现用表示某网友对实际名次为的四位选手名次做出的一种等可能的预测排列,是该网友预测的名次与真实名次的偏离程度的一种描述.

1)求的分布列及数学期望;

2)按(1)中的结果,若小明家三人的排序号与真实名次的偏离程度都是,计算出现这种情况的概率(假定小明家每个人排序相互独立).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数有两个不同的极值点.

1)求的取值范围.

2)求的极大值与极小值之和的取值范围.

3)若,则是否有最小值?若有,求出最小值;若没有,说明理由.

查看答案和解析>>

同步练习册答案