精英家教网 > 高中数学 > 题目详情
(2007•威海一模)已知a1,a2,…,a8是首项为1,公比为2的等比数列,对于1≤k<8的整数k,数列b1,b2,…,b8由bn=
an+k,1≤n≤8-k
an+k-8, 8-k<n≤8
确定.记C=
8
n=1
anbn

(I)求k=3时C的值(求出具体的数值);
(Ⅱ)求C最小时k的值.
分析:(I)利用已知和等比数列的通项公式可得an,当k=3时,可得bn=
an+3,1≤n≤5
an-5,5<n≤8.
进而得到C=
8
n=1
anbn
=
5
n=1
anan+3+
8
n=6
anan-5
即可得出.
(II)利用bn=
an+k,1≤n≤8-k
an+k-8,8-k<n≤8.
即可得出C的表达式,再利用基本不等式的性质即可得出.
解答:解:(I)显然an=2n-1(1≤n≤8)
∴k=3,∴bn=
an+3,1≤n≤5
an-5,5<n≤8.

C=
8
n=1
anbn=
5
n=1
anan+3+
8
n=6
anan-5=
5
n=1
22n+1+
8
n=6
22n-6

=(23+25+27+29+211)+(25+27+29
=3400.
(II)∵bn=
an+k,1≤n≤8-k
an+k-8,8-k<n≤8.

C=
8
n=1
anbn=
8-k
n=1
anan+k+
8
n=0-k
anan+k-8=
8-k
n=1
22n+k-2+
8
n=9-k
22n+k-10

=
2k(48-k-1)
4-1
+
28-k(4k-1)
4-1
=
1
3
(216-k-2k+28+k-28-k)

=
1
3
(212-24)(24-k+2k-4)≥
2
3
(212-24)
24-k2k-4
=2720

∴当且仅当24-k=2k-4时,C的值最小,此时解得k=4.
点评:正确理解分段函数的意义、求和符号、基本不等式的性质等是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2007•威海一模)已知函数f(x)=
12
[tln(x+2)-ln(x-2)],且f(x)≥f(4)恒成立.
(1)求t的值;
(2)求x为何值时,f(x)在[3,7]上取得最大值;
(3)设F(x)=aln(x-1)-f(x),若F(x)是单调递增函数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•威海一模)抛物线y=
14
x2
的焦点坐标是
(0,1)
(0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•威海一模)不等式
1
x-1
<x+1
的解集是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•威海一模)复数
(2-i)2
i
(i是虚数单位)等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•威海一模)老师在班级50名学生中,依次抽取学号为5,10,15,20,25,30,35,40,45,50的学和进行作业检查,这种抽样方法是(  )

查看答案和解析>>

同步练习册答案