精英家教网 > 高中数学 > 题目详情
已知点P及椭圆,Q是椭圆上的动点,则的最大值为              


如图,设,则
因为是椭圆上动点,所以
所以
因为,所以当时,取到最大值
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆的方程为它的一个焦点与抛物线的焦点重合,离心率过椭圆的右焦点F作与坐标轴不垂直的直线交椭圆于A、B两点.(Ⅰ)求椭圆的标准方程;
(Ⅱ)设点求直线的方程

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,椭圆的中心在坐标原点,长轴端点为A,B,右焦点为F,且.
(I) 求椭圆的标准方程;
(II)过椭圆的右焦点F作直线,直线l1与椭圆分别交于点M,N,直线l2与椭圆分别交于点P,Q,且,求四边形MPNQ的面积S的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知地球运行的轨道是椭圆,太阳在这个椭圆的一个焦点上,这个椭圆的长半轴长约为km,半焦距约为km,则地球到太阳的最大距离是  km。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

.(本小题满分13分)
P为椭圆上任意一点,为左、右焦点,如图所示.
(1)若的中点为,求证:
(2)若∠,求|PF1|·|PF2|之值;
(3)椭圆上是否存在点P,使·=0,若存在,求出P点的坐标,若不存在,试说明理由

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆的一个焦点是(0,2),那么(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知是椭圆上的点,以为圆心的圆与轴相切于椭
圆的焦点,圆轴相交于两点.若为锐角三角形,则椭圆的离心率
的取值范围为(    )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C:+=1(a>b>0),直线y=x+与以原点为圆心,以椭圆C的短半轴长为半径的圆相切,F1,F2为其左、右焦点,P为椭圆C上任一点,△F1PF2的重心为G,内心为I,且IG∥F1F2。⑴求椭圆C的方程。⑵若直线L:y=kx+m(k≠0)与椭圆C交于不同两点A,B且线段AB的垂直平分线过定点C(,0)求实数k的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分10分)
已知椭圆的方程为,称圆心在坐标原点,半径为的圆为椭圆的“伴随圆”,椭圆的短轴长为2,离心率为
(Ⅰ)求椭圆及其“伴随圆”的方程;
(Ⅱ)若直线与椭圆交于两点,与其“伴随圆”交于两点,当 时,求△面积的最大值.

查看答案和解析>>

同步练习册答案