精英家教网 > 高中数学 > 题目详情

【题目】在统计调查中,问卷的设计是一门很大的学问,特别是对一些敏感性问题.例如学生在考试中有无作弊现象,社会上的偷税漏税等,更要精心设计问卷.设法消除被调查者的顾虑,使他们能够如实回答问题,否则被调查者往往会拒绝回答,或不提供真实情况.为了调查中学生中的早恋现象,随机抽出200名学生,调查中使用了两个问题.①你的血型是A型或B(资料:我国人口型血比例41%型血比例28%型血比例24%.型血比例7% ).②你是否有早恋现象,让被调查者掷两枚骰子,点数之和为奇数的学生如实回答第一个问题.点数之和为偶数的学生如实回答第二个问题,回答的人往一个盒子中放一个小石子,回答的人什么都不放,后来在盒子中收到了57个小石子.

1)试计算掷两枚骰子点数之和为偶数的机率;

2)你能否估算出中学生早恋人数的百分比?

【答案】(1)(2).

【解析】

1)先计算抛掷两枚骰子的所有可能,再找出满足题意的可能,用古典概型的概率计算公式即可求得;

2)根据(1)中所求,结合参考数据,先求得关于血型问题回答是的同学数量,再求出回答是早恋同学的数量,进而算出早恋比例.

1)抛掷两枚骰子,总共有36种可能;

其中满足点数之和为偶数有以下18中可能:

故满足题意的概率.

故掷两枚骰子点数之和为偶数的机率为.

(2)由(1)可知,点数之和为偶函数和奇数的概率相等,

则可估算有100名同学回答第一个问题,100名同学回答第二个问题.

根据参考数据,回答第一个问题,选择是的有人;

故回答第二个问题,选择是的有人.

故早恋人数的占比为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】学校艺术节对四件参赛作品只评一件一等奖,在评奖揭晓前,甲,乙,丙,丁四位同学对这四件参赛作品预测如下:

甲说:作品获得一等奖”; 乙说:作品获得一等奖”;

丙说:两件作品未获得一等奖”; 丁说:作品获得一等奖”.

评奖揭晓后,发现这四位同学中只有两位说的话是对的,则获得一等奖的作品是_________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学德育处为了解全校学生的上网情况,在全校随机抽取了40名学生(其中男、女生人数各占一半)进行问卷调查,并进行了统计,按男、女分为两组,再将每组学生的月上网次数分为5组:,得到如图所示的频率分布直方图.

1)写出女生组频率分布直方图中的值;

2)求抽取的40名学生中月上网次数不少于15的学生人数;

3)在抽取的40名学生中从月上网次数不少于20的学生中随机抽取3人,并用表示随机抽取的3人中男生的人数,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某种大型医疗检查机器生产商,对一次性购买2台机器的客户,推出两种超过质保期后两年内的延保维修优惠方案:方案一:交纳延保金7000元,在延保的两年内可免费维修2次,超过2次每次收取维修费2000元;方案二:交纳延保金10000元,在延保的两年内可免费维修4次,超过4次每次收取维修费1000元.某医院准备一次性购买2台这种机器。现需决策在购买机器时应购买哪种延保方案,为此搜集并整理了50台这种机器超过质保期后延保两年内维修的次数,得下表:

维修次数

0

1

2

3

台数

5

10

20

15

以这50台机器维修次数的频率代替1台机器维修次数发生的概率,记X表示这2台机器超过质保期后延保的两年内共需维修的次数。

(1)求X的分布列;

(2)以所需延保金及维修费用的期望值为决策依据,医院选择哪种延保方案更合算?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司为了对某种商品进行合理定价,需了解该商品的月销售量(单位:万件)与月销售单价(单位:元/件)之间的关系,对近个月的月销售量和月销售单价数据进行了统计分析,得到一组检测数据如表所示:

月销售单价(元/件)

月销售量(万件)

1)若用线性回归模型拟合之间的关系,现有甲、乙、丙三位实习员工求得回归直线方程分别为:,其中有且仅有一位实习员工的计算结果是正确的.请结合统计学的相关知识,判断哪位实习员工的计算结果是正确的,并说明理由;

2)若用模型拟合之间的关系,可得回归方程为,经计算该模型和(1)中正确的线性回归模型的相关指数分别为,请用说明哪个回归模型的拟合效果更好;

3)已知该商品的月销售额为(单位:万元),利用(2)中的结果回答问题:当月销售单价为何值时,商品的月销售额预报值最大?(精确到

参考数据:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正方体的棱长为1,有下列四个命题:

与平面所成角为

②三棱锥与三棱锥的体积比为

③过点作平面,使得棱在平面上的正投影的长度相等,则这样的平面有且仅有一个;

④过作正方体的截面,设截面面积为,则的最小值为.

上述四个命题中,正确命題的序号为______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】大型中华传统文化电视节目《中国诗词大会》以“赏中华诗词,寻文化基因,品生活之美”为宗旨,深受广大观众喜爱,各基层单位也通过各种形式积极组织、选拔和推荐参赛选手.某单位制定规则如下:(1)凡报名参赛的诗词爱好者必须先后通过笔试和面试,方可获得入围正赛的推荐资格;(2)笔试成绩不低于85分的选手进入面试,面试成绩最高的3人获得推荐资格.在该单位最近组织的一次选拔活动中,随机抽取了一个笔试成绩的样本,据此绘制成频率分布直方图(如图.同时,也绘制了所有面试成绩的茎叶图(如图2,单位:分).

(Ⅰ)估计该单位本次报名参赛的诗词爱好者的总人数;

(Ⅱ)若从面试成绩高于(不含)中位数的选手中随机选取3人,设其中获得推荐资格的人数为,求随机变量的分布列及数学期望

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知

(1)求函数的极值;

(2),对于任意,总有成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】低碳经济时代,文化和旅游两大产业逐渐成为我国优先发展的“绿色朝阳产业”.为了解某市的旅游业发展情况,某研究机构对该市2019年游客的消费情况进行随机调查,得到频数分布表及频率分布直方图.

旅游消费(千元)

频数(人)

10

60

1)由图表中数据,求的值及游客人均消费估计值(同一组中的数据以这组数据所在区间中点的值为代表)

2)该机构利用最小二乘法得到20132017年该市的年旅游人次(千万人次)与年份代码的线性回归模型:.

注:年份代码15分别对应年份20132017

①试求20132017年的年旅游人次的平均值;

②据统计,2018年该市的年旅游人次为9千万人次.建立20132018年该市年旅游人次(千万人次)与年份代码的线性回归方程,并估计2019年该市的年旅游收入.

注:年旅游收入=年旅游人次×人均消费

参考数据:.参考公式:.

查看答案和解析>>

同步练习册答案