精英家教网 > 高中数学 > 题目详情
15.当a为何值时,(a-2)x2+4$\sqrt{5}$x+a-3<0的解为一切实数.

分析 根据不等式恒成立,列出关于a的不等式组,求出a的取值范围即可.

解答 解:不等式,(a-2)x2+4$\sqrt{5}$x+a-3<0的解为一切实数,
应满足$\left\{\begin{array}{l}{a-2<0}\\{△<0}\end{array}\right.$,
即$\left\{\begin{array}{l}{a<2}\\{80-4(a-2)(a-3)<0}\end{array}\right.$,
解得$\left\{\begin{array}{l}{a<2}\\{a<-2,或a>7}\end{array}\right.$,
即a<-2;
∴a的取值范围是{a|a<-2}.

点评 本题考查了不等式恒成立的问题,解题的关键是列出满足条件的不等式组,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知△ABC的三个内角A,B,C所对的边分别为a,b,c,asinC=csinB.
(Ⅰ)判断△ABC的形状;
(Ⅱ)若B=30°,a=2,求BC边上中线AD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知某棱锥的三视图如图所示,俯视图为正方形,根据图中所给的数据.那么该棱锥的表面积是(  )
A.8+4$\sqrt{2}$B.4+2$\sqrt{2}$C.2$\sqrt{2}$+2$\sqrt{3}$D.2+2$\sqrt{2}$+2$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.在平面直角坐标系xOy中,已知直线l:x+y+m=0和圆M:x2+y2=9,若圆M上存在点P,使得P到直线l的距离为2,则实数m的取值范围是[-5$\sqrt{2}$,5$\sqrt{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+ax,x≤1}\\{-x-3,x>1}\end{array}\right.$,则“a≤-2”是“f(x)在R上单调函数”的(  )
A.充分而不必要条件B.必要而不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=$\frac{1}{2p}$x2-x+3在区间[-1,2]上的最大值为M,最小值为m,求实数p为何值时,2M+m=3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知数列{an}中,a1=a2=1,且对任意的n∈N*,满足an+2=2an+1+an,则a5=17.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.记Sn是各项均为正数的等差数列{an}的前n项和,若a1≥1,则(  )
A.S2mS2n≥Sm+n2,lnS2mlnS2n≤ln2Sm+n
B.S2mS2n≤Sm+n2,lnS2mlnS2n≤ln2Sm+n
C.S2mS2n≥Sm+n2,lnS2mlnS2n≥ln2Sm+n
D.S2mS2n≤Sm+n2,lnS2mlnS2n≥ln2Sm+n

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设函数f′(x)是函数f(x)(x∈R)的导函数,f(0)=1,且3f(x)=f′(x)-3,则4f(x)>f′(x)的解集为(  )
A.($\frac{ln4}{3}$,+∞)B.($\frac{ln2}{3}$,+∞)C.($\frac{\sqrt{3}}{2}$,+∞)D.($\frac{\sqrt{e}}{2}$,+∞)

查看答案和解析>>

同步练习册答案