精英家教网 > 高中数学 > 题目详情
16.已知二次不等式ax2+2x+b>0解集为{x|x≠-$\frac{1}{a}$},则a2+b2-a-b的最小值为(  )
A.0B.1C.2D.4

分析 根据一元二次不等式的解集得到a,b满足的条件,利用配方法结合基本不等式进行求解即可.

解答 解:∵二次不等式ax2+2x+b>0解集为{x|x≠-$\frac{1}{a}$},
∴$\left\{\begin{array}{l}{a>0}\\{△=4-4ab=0}\\{-\frac{2}{2a}=-\frac{1}{a}}\end{array}\right.$,则a>0且ab=1,
则a2+b2-a-b=(a+b)2-(a+b)-2ab=(a+b)2-(a+b)-2=(a+b-$\frac{1}{2}$)2-$\frac{9}{4}$,
∵a+b≥2$\sqrt{ab}$=2,∴当a+b=2时,a2+b2-a-b取得最小值此时a2+b2-a-b=22-2-2=0,
故选:A

点评 本题主要考查一元二次不等式以及基本不等式的应用,利用配方法和转化法是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.设函数f(x)=-x3+x-1.
(Ⅰ)若y=-2x+b为f(x)的一条切线,求b值.
(Ⅱ)若f(t)<-2t+m对t∈(0,2)恒成立,求实数m的取值范围.
( III)若关于x的方程f (x)=k恒有三个不相等的实根,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在物理实验中,为了研究所挂物体的重量x对弹簧长度y的影响.某学生通过实验测量得到物体的重量与弹簧长度的对比表:
物体重量(单位g)12345
弹簧长度(单位cm)1.53456.5
(1)利用最小二乘法求y对x的回归直线方程;
(2)预测所挂物体重量为8g时的弹簧长度.
(参考公式及数据:$b=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x•\overline y}}}{{\sum_{i=1}^n{x_i^2}-n{{\overline x}^2}}},a=\overline y-b\overline x$,$\sum_{i=1}^5{{x_i}^2}=55$$\sum_{i=1}^5{{x_i}{y_i}}=72$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在棱锥P-ABC中,侧棱PA、PB、PC两两垂直,Q为底面△ABC内一点,若点Q到三个侧面的距离分别为3、4、5,则以线段PQ为直径的球的体积为(  )
A.$\frac{125π}{6}$B.$\frac{{125\sqrt{2}π}}{3}$C.$\frac{50π}{3}$D.$\frac{25π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=ax2+bx+c的图象在y轴上的截距为5,且满足下列两个条件:①f(x)=f(2-x);②f(-1)=2f(1).(1)求f(x)的解析式;
(2)若f(x)≤20,求相应x的取值集合.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知F1,F2为双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{16}$=1(a>0)的左右焦点,点A在双曲线的右支上,点P(7,2)是平面内一定点,若对任意实数m,直线4x+3y+m=0与双曲线C至多有一个公共点,则|AP|+|AF2|的最小值为(  )
A.2$\sqrt{37}$-6B.10-3$\sqrt{5}$C.8-$\sqrt{37}$D.2$\sqrt{5}$-2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.对数函数f(x)=log3(2x+1)的反函数是g(x),g(2)=4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.集合M={x|x2-x-6≥0},集合N={x|-3≤x≤1},则N∩(∁RM)等于(  )
A.[-2,1]B.(-2,1]C.[-3,3)D.(-2,3)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.一个多面体的直观图(图1)及三视图(图2)如图所示,其中M、N分别是AF、BC的中点,
(1)求证:MN∥平面CDEF;
(2)求点B到平面MNF的距离.

查看答案和解析>>

同步练习册答案