【题目】已知函数,.
(1)当时,求的最小值;
(2)当时,若存在,使得对任意的,都有恒成立,求实数的取值范围.
【答案】(1)见解析 (2)
【解析】
(1)求出,分三种情况讨论的范围,在定义域内,分别令求得的范围,可得函数增区间,求得的范围,可得函数的减区间,根据单调性;(2)存在,使得对任意的都有恒成立,等价于,分别利用导数研究函数的单调性,并求出的最小值,解不等式即可得结果.
(1)因为的定义域为, .
①当时,因为,,所以在上为增函数,;
②当时,在上为减函数,在上为增函数,;
③当时,在上为减函数, .
(2)当时,若存在,使得对任意的都有恒成立,
则.
由(1)知,当时, .
因为,令,则,
令,得;令,得,
所以在上单调递减,在上单调递增,,所以在上单调递增.
所以,则,
解得,又,,
所以,即实数的取值范围是.
科目:高中数学 来源: 题型:
【题目】一只药用昆虫的产卵数与一定范围内与温度有关, 现收集了该种药用昆虫的6组观测数据如下表:
温度/℃ | 21 | 23 | 24 | 27 | 29 | 32 |
产卵数/个 | 6 | 11 | 20 | 27 | 57 | 77 |
(1)若用线性回归模型,求关于的回归方程=x+(精确到0.1);
(2)若用非线性回归模型求关的回归方程为 且相关指数
( i )试与 (1)中的线性回归模型相比,用 说明哪种模型的拟合效果更好.
( ii )用拟合效果好的模型预测温度为时该种药用昆虫的产卵数(结果取整数).
附:一组数据(x1,y1), (x2,y2), ...,(xn,yn), 其回归直线=x+的斜率和截距的最小二乘估计为,,相关指数.
。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某厂家拟举行促销活动,经调查测算,该产品的年销售量(即该厂的年产量)万件与年促销费用万元()满足(为常数),如果不搞促销活动,则该产品的年销售量只能是1万件.已知年生产该产品的固定投入为8万元,每生产1万件该产品需要再投入16万元,厂家将每件产品的销售价格定为每件产品年平均成本的1.5倍(产品成本包括固定投入和再投入两部分资金).
(1)将该产品的年利润万元表示为年促销费用万元的函数;
(2)该厂家年促销费用投入多少万元时,厂家的利润最大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设F1,F2分别是椭圆E: (a>b>0)的左、右焦点,过点F1的直线交椭圆E于A,B两点,|AF1|=3|BF1|,若cos∠AF2B=,则椭圆E的离心率为( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义满足不等式|xA|<B(A∈R,B>0)的实数x的集合叫做A的B邻域.若a+bt(t为正常数)的a+b邻域是一个关于原点对称的区间,则a2+b2的最小值为______.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数为偶函数,函数为奇函数。对任意实数x恒成立.
(1)求函数与;
(2)设,,若对于恒成立,求实数m的取值范围;
(3)对于(2)中的函数,若方程没有实数解,实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,某建筑工地搭建的脚手架局部类似于一个 的长方体框架,一个建筑工人欲从处沿脚手架攀登至 处,则其最近的行走路线中不连续向上攀登的概率为( )
A. B. C. D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com