精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

(1)当时,求的最小值;

(2)当时,若存在,使得对任意的,都有恒成立,求实数的取值范围.

【答案】(1)见解析 (2)

【解析】

(1)求出,分三种情况讨论的范围,在定义域内,分别令求得的范围,可得函数增区间,求得的范围,可得函数的减区间,根据单调性;(2)存在,使得对任意的都有恒成立,等价于分别利用导数研究函数的单调性,并求出的最小值,解不等式即可得结果.

(1)因为的定义域为 .

①当时,因为,所以上为增函数,

②当时,上为减函数,在上为增函数,

③当时,上为减函数, .

(2)当时,若存在,使得对任意的都有恒成立,

.

由(1)知,当时, .

因为,令,则

,得;令,得

所以上单调递减,在上单调递增,,所以上单调递增.

所以,则

解得,又

所以,即实数的取值范围是.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】一只药用昆虫的产卵数与一定范围内与温度有关, 现收集了该种药用昆虫的6组观测数据如下表:

温度/℃

21

23

24

27

29

32

产卵数/

6

11

20

27

57

77

(1)若用线性回归模型,求关于的回归方程=x+(精确到0.1);

(2)若用非线性回归模型求的回归方程为 且相关指数

( i )试与 (1)中的线性回归模型相比,用 说明哪种模型的拟合效果更好.

( ii )用拟合效果好的模型预测温度为时该种药用昆虫的产卵数(结果取整数).

附:一组数据(x1,y1), (x2,y2), ...,(xn,yn), 其回归直线=x+的斜率和截距的最小二乘估计为,相关指数

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】要了解全校学生的体重情况,请你设计一个调查方案,并实施调查,完成一份统计调查分析报告

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某厂家拟举行促销活动,经调查测算,该产品的年销售量(即该厂的年产量)万件与年促销费用万元()满足为常数),如果不搞促销活动,则该产品的年销售量只能是1万件.已知年生产该产品的固定投入为8万元,每生产1万件该产品需要再投入16万元,厂家将每件产品的销售价格定为每件产品年平均成本的1.5倍(产品成本包括固定投入和再投入两部分资金).

(1)将该产品的年利润万元表示为年促销费用万元的函数;

(2)该厂家年促销费用投入多少万元时,厂家的利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】F1F2分别是椭圆E ab0)的左、右焦点,过点F1的直线交椭圆EAB两点,|AF1|=3|BF1|,若cosAF2B=,则椭圆E的离心率为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义满足不等式|xA|BARB0)的实数x的集合叫做AB邻域.若a+btt为正常数)的a+b邻域是一个关于原点对称的区间,则a2+b2的最小值为______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为常数)

(Ⅰ)若是定义域上的单调函数,求的取值范围;

(Ⅱ)若存在两个极值点,且,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为偶函数,函数为奇函数。对任意实数x恒成立.

1)求函数

2)设,若对于恒成立,求实数m的取值范围;

3)对于(2)中的函数,若方程没有实数解,实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,某建筑工地搭建的脚手架局部类似于一个 的长方体框架,一个建筑工人欲从处沿脚手架攀登至 处,则其最近的行走路线中不连续向上攀登的概率为(  )

A. B. C. D.

查看答案和解析>>

同步练习册答案