精英家教网 > 高中数学 > 题目详情
(平)若二次函数y=ax2+bx+c(ac≠0)图象的顶点坐标为(-
b
2a
,-
1
4a
)
,与x轴的交点P、Q位于y轴的两侧,以线段PQ为直径的圆与y轴交于M(0,4)和N(0,-4).则点(b,c)所在曲线为(  )
分析:确定以线段PQ为直径的圆的圆心坐标,利用|CM|=|CQ|,及二次函数y=ax2+bx+c(ac≠0)图象的顶点坐标,化简,即可求得点(b,c)所在曲线.
解答:解:由题意,以线段PQ为直径的圆的圆心坐标为C(-
b
2a
,0)
,则
由|CM|=|CQ|,可得
b2
4a2
+16=
b2-4ac
4a2

∵二次函数y=ax2+bx+c(ac≠0)图象的顶点坐标为(-
b
2a
,-
1
4a
)

4ac-b2
4a
=-
1
4a

∴b2-4ac=1
∴b2+64a2=1,a=
b2-1
4c

b2+64×
(b2-1)2
16c2
=1

∴c2+4b2=4
∴b2+
c2
4
=1
∴点(b,c)所在曲线为椭圆
故选B.
点评:本题考查轨迹方程,考查学生的运算能力,解题的关键是建立等式|CM|=|CQ|,正确化简.
练习册系列答案
相关习题

科目:高中数学 来源:2011-2012学年湖北省武汉市黄陂一中高三数学滚动检测试卷3(8.20)(解析版) 题型:选择题

(平)若二次函数y=ax2+bx+c(ac≠0)图象的顶点坐标为,与x轴的交点P、Q位于y轴的两侧,以线段PQ为直径的圆与y轴交于M(0,4)和N(0,-4).则点(b,c)所在曲线为( )
A.圆
B.椭圆
C.双曲线
D.抛物线

查看答案和解析>>

同步练习册答案