分析 (1)可以看出需讨论P点分别在边BC、CD,和DA上,然后根据三角形的面积公式即可求出每种情况下△ABP的面积,这样可用分段函数表示出y与x的函数关系式;
(2)△ABP的底边固定不变,从而高最大时,△ABP的面积最大,从图形上看出P点在边CD上时,面积取到最大值,从而可得出x的范围及面积的最大值.
解答 解:(1)①当P点在边BC上时,${S}_{△ABP}=\frac{1}{2}•AB•BP=\frac{1}{2}•4•x=2x$,0<x≤4;
②当P点在边CD上时,${S}_{△ABP}=\frac{1}{2}×4×4=8$,4<x≤8;
③当P点在边DA上时,${S}_{△ABP}=\frac{1}{2}•4•[4-(x-8)]$=-2x+24,8<x<12;
∴$y=\left\{\begin{array}{l}{2x}&{0<x≤4}\\{8}&{4<x≤8}\\{-2x+24}&{8<x<12}\end{array}\right.$;
(2)可看出当P点在边CD上时,面积最大;
即x∈[4,8]时,△ABP的面积最大,最大面积为8.
点评 考查三角形的面积公式,分段函数的概念及表示,要清楚P点是从B出发.
科目:高中数学 来源: 题型:选择题
A. | -$\frac{2}{3}$m | B. | -$\frac{3}{2}$m | C. | $\frac{2}{3}$m | D. | $\frac{3}{2}$m |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 6π | B. | 7π | C. | 8π | D. | $\frac{{7\sqrt{7}}}{6}π$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com