精英家教网 > 高中数学 > 题目详情

【题目】在一个半径为1的半球材料中截取两个高度均为的圆柱,其轴截面如图所示.设两个圆柱体积之和为

(1)的表达式,并写出的取值范围;

(2)求两个圆柱体积之和的最大值.

【答案】(1)见解析 (2)

【解析】试题分析:1)圆柱的高、底面的半径和球的半径是一个直角三角形的三边,故可以得到两个圆柱的底面半径分别为 ,由此可以计算出两个圆柱的体积之和以及的取值范围.(2)因为,利用导数讨论该函数的单调性,从而求得的最大值为

解析:(1自下而上两个圆柱的底面半径分别为: 它们的高均为,所以体积之和

因为,所以的取值范围是

(2) ,得,因为,得 所以当时, ;当时, .所以上为增函数,在上为减函数,所以当时, 取得极大值也是最大值, 的最大值为

答:两个圆柱体积之和的最大值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知向量 =(x,﹣1), =(x﹣2,3), =(1﹣2x,6).
(1)若 ⊥(2 + ),求| |;
(2)若 <0,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若二次函数f(x)=4x2-2(t-2)x-2t2-t+1在区间[-1,1]内至少存在一个值m,使得f(m)>0,则实数t的取值范围( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商品一年内出厂价格在6元的基础上按月份随正弦曲线波动,已知3月份达到最高价格8元,7月份价格最低为4元,该商品在商店内的销售价格在8元基础上按月份随正弦曲线波动,5月份销售价格最高为10元,9月份销售价最低为6元,假设商店每月购进这种商品m件,且当月销完,你估计哪个月份盈利最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数y=f(x)的定义域为R,且满足

(1)f(1)=3

(2)对于任意的,总有

(3)对于任意的

(I)求f(0)及f(-1)的值

(II)求证:函数y=f(x)-1为奇函数

(III)若,求实数m的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C经过点A(-1,0),8(0,3),圆心C在第一象限,线段AB的垂直平分线交圆C 于点D,E,DE =2

(1)求直线DE的方程;

(2)求圆C的方程;

(3)过点(0,4)作圆C的切线,求切线的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=cos(ωx+φ)的部分图象如图所示,则f(x)的单调递减区间为(

A.(kπ﹣ ,kπ+ ,),k∈z
B.(2kπ﹣ ,2kπ+ ),k∈z
C.(k﹣ ,k+ ),k∈z
D.( ,2k+ ),k∈z

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)是这样定义的:对于任意整数m,当实数x满足不等式|x﹣m|< 时,有f(x)=m.
(1)求函数f(x)的定义域D,并画出它在x∈D∩[0,3]上的图象;
(2)若数列an=2+10( n , 记Sn=f(a1)+f(a2)+f(a3)+…+f(an),求Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的两个焦点分别为 ,且点在椭圆.

1求椭圆的标准方程;

2设椭圆的左顶点为,过点的直线与椭圆相交于异于的不同两点,求的面积的最大值.

查看答案和解析>>

同步练习册答案