精英家教网 > 高中数学 > 题目详情
4.已知|$\overrightarrow{a}$|=$\sqrt{2}$,|$\overrightarrow{b}$|=1,$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为45°,求使向量(2$\overrightarrow{a}$+λ$\overrightarrow{b}$)与(λ$\overrightarrow{a}$-3$\overrightarrow{b}$)的夹角是直角的λ的值.

分析 由题意求出$\overrightarrow{a}•\overrightarrow{b}$,结合(2$\overrightarrow{a}$+λ$\overrightarrow{b}$)•(λ$\overrightarrow{a}$-3$\overrightarrow{b}$)=0,展开后整理求得λ的值.

解答 解:由题意可得$\overrightarrow{a}•\overrightarrow{b}$=$\sqrt{2}$×1×cos45°=1,
再由(2$\overrightarrow{a}$+λ$\overrightarrow{b}$)•(λ$\overrightarrow{a}$-3$\overrightarrow{b}$)=$2λ|\overrightarrow{a}{|}^{2}+({λ}^{2}-6)\overrightarrow{a}•\overrightarrow{b}-3λ|\overrightarrow{b}{|}^{2}=0$,
得$2λ•(\sqrt{2})^{2}+{λ}^{2}-6-3λ=0$,
即λ2+λ-6=0.
解得:λ=-3或λ=2.

点评 本题考查平面向量的数量积运算,考查一元二次方程的解法,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.某校4000学生全部参加了“抗战知识普及大赛”,现随机抽取40名学生的成绩(均为整数)整理后画出的频率分布直方图如图所示,其中第六、二、三、四小组的人数依次构成等差数列,请视察图形,回答下列问题:
(1)分别求第二、三小组的频率;
(2)估计全校成绩在60分以上(包括60分)的学生共有多少人?
(3)样本中,从成绩在80分以上(包括80分)的学生中任选2人.
①写出这个试验的所有基本事件;
②求至少有1人成绩在90~100分数段的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.把椭圆$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{9}$=1的每个点的横坐标缩短到原来的$\frac{1}{4}$,纵坐标缩短到原来的$\frac{1}{3}$,则所得曲线方程x2+y2=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.若点M到点F(0,2)的距离与到x轴的距离相等,且点Q满足$\overrightarrow{QM}=\overrightarrow{MF}$.
(1)求动点Q的轨迹C的方程;
(2)若点P(x0,y0)为圆x2+y2=1上一动点,过点P作圆的切线1与(1)中的曲线C相交于A、B两点(A、B在y轴的两侧),求平面图形OAFB面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知首项大于0的数列{an}满足:an≠0,$\frac{1}{9}$,a1,1成等比数列,an-an+1=2an+1•an(n∈N*).
(1)求数列{an}的通项公式;
(2)设数列{an2}的前n项和为Tn,证明:Tn<$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知椭圆C:x2+$\frac{{y}^{2}}{81}$=1.
(1)问与椭圆C有相同焦点的椭圆有多少个?写出其中两个椭圆方程;
(2)与椭圆C有相同焦点且经过点P(3,-3)的椭圆有几个?写出它的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.过点(2016,2016),且与直线2x-y-2015=0平行的直线是(  )
A.2x+y-2016=0B.2x-y-2016=0C.2x+y+2016=0D.2x-y+2016=0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,圆O:x2+y2=8内有-点P(-1,2),AB为过P且倾斜角为135°的弦.
(1)求AB的长;
(2)若圆C与圆O内切又与弦AB切于点P,求圆C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知f(x)是偶函数,g(x)是奇函数,且f(x)+g(x)=$\frac{2}{x-2}$.求f(x)与g(x)的解析式.

查看答案和解析>>

同步练习册答案