精英家教网 > 高中数学 > 题目详情
在正三棱锥A-BCD中,E、F分别是AB、BC的中点,EF⊥DE,且BC=1,则A-BCD的体积为( )
A.
B.
C.
D.
【答案】分析:先证明AC⊥面ABD,然后求底面ACD的面积,即可求出体积.
解答:解:EF⊥DE,EF∥AC∴AC⊥DE,又AC⊥BD∴AC⊥面ABD,
AB=AC=AD=,可求体积:
故选B.
点评:本题考查椎体体积计算公式,考查空间想象能力,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在正三棱锥A-BCD中,E、F是AB、BC的中点,EF⊥DE,若BC=a,则正三棱锥A-BCD的体积为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在正三棱锥A-BCD中,E,F分别是AB,BC的中点,EF⊥DE且BC=
2
,若此正三棱锥的四个顶点都在球O的面上,则球O的体积是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在正三棱锥A-BCD中,底面正三角形BCD的边长为2,点E是AB的中点,AC⊥DE,则正三棱锥A-BCD的体积是
2
3
2
3

查看答案和解析>>

科目:高中数学 来源: 题型:

在正三棱锥A-BCD中,E、F分别为棱AB、CD的中点,设EF与AC所成角为α,EF与BD所成角为β,则α+β等于
π
2
π
2

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图所示,在正三棱锥A-BCD中,E,F分别为BD,AD的中点,EF⊥CF,则直线BD与平面ACD所成的角为
 

查看答案和解析>>

同步练习册答案