精英家教网 > 高中数学 > 题目详情

【题目】甲、乙、丙三人去某地务工,其工作受天气影响,雨天不能出工,晴天才能出工.其计酬方式有两种,方式一:雨天没收入,晴天出工每天元;方式而:雨天每天元,晴天出工每天元;三人要选择其中一种计酬方式,并打算在下个月(天)内的晴天都出工,为此三人作了一些调查,甲以去年此月的下雨天数(天)为依据作出选择;乙和丙在分析了当地近年此月的下雨天数()的频数分布表(见下表)后,乙以频率最大的值为依据作出选择,丙以的平均值为依据作出选择.

8

9

10

11

12

13

频数

3

1

2

0

2

1

(Ⅰ)试判断甲、乙、丙选择的计酬方式,并说明理由;

(Ⅱ)根据统计范围的大小,你觉得三人中谁的依据更有指导意义?

(Ⅲ)以频率作为概率,求未来三年中恰有两年,此月下雨不超过天的概率.

【答案】(Ⅰ)答案见解析;(Ⅱ)答案见解析;(Ⅲ).

【解析】分析:(Ⅰ)由题意计算可得甲选择计酬方式二;乙选择计酬方式一;丙选择计酬方式二;

Ⅱ)依据三人的统计和利用的数据可知丙的统计范围最大,三人中丙的依据更有指导意义;

任选一年,此月下雨不超过11天的频率为,由题意结合概率公式计算可得此月下雨不超过11天的概率为.

详解:(Ⅰ)按计酬方式一、二的收入分别记为

所以甲选择计酬方式二;

由频数分布表知频率最大的n=8,

所以乙选择计酬方式一;

n的平均值为

所以丙选择计酬方式二;

Ⅱ)甲统计了1个月的情况,乙和丙统计了9个月的情况,

但乙只利用了部分数据,丙利用了所有数据,

所以丙的统计范围最大,

三人中丙的依据更有指导意义;

Ⅲ)任选一年,此月下雨不超过11天的频率为,以此作为概率,则未来三年中恰有两年,此月下雨不超过11天的概率为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某工厂有两台不同机器AB生产同一种产品各10万件,现从各自生产的产品中分别随机抽取二十件,进行品质鉴定,鉴定成绩的茎叶图如下所示:

该产品的质量评价标准规定:鉴定成绩达到的产品,质量等级为优秀;鉴定成绩达到的产品,质量等级为良好;鉴定成绩达到的产品,质量等级为合格将这组数据的频率视为整批产品的概率

(1)从等级为优秀的样本中随机抽取两件,记为来自B机器生产的产品数量,写出的分布列,并求的数学期望;

(2)完成下列列联表,以产品等级是否达到良好以上(含良好)为判断依据,判断能不能在误差不超过0.05的情况下,认为B机器生产的产品比A机器生产的产品好;

A生产的产品

B生产的产品

合计

良好以上(含良好)

合格

合计

(3)已知优秀等级产品的利润为12元/件,良好等级产品的利润为10元/件,合格等级产品的利润为5元/件,A机器每生产10万件的成本为20万元,B机器每生产10万件的成本为30万元;该工厂决定:按样本数据测算,两种机器分别生产10万件产品,若收益之差达到5万元以上,则淘汰收益低的机器,若收益之差不超过5万元,则仍然保留原来的两台机器.你认为该工厂会仍然保留原来的两台机器吗?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为抛物线的焦点,过的动直线交抛物线两点.当直线与轴垂直时,

(1)求抛物线的方程;

(2)设直线的斜率为1且与抛物线的准线相交于点,抛物线上存在点使得直线的斜率成等差数列,求点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为分别是其左、右焦点,且过点.

(1)求椭圆的标准方程;

(2)若在直线上任取一点,从点的外接圆引一条切线,切点为.问是否存在点,恒有?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,以原点为极点,轴的正半轴为极轴建立极坐标系,两种坐标系中取相同的长度单位.已知圆是以极坐标系中的点为圆心,为半径的圆,直线的参数方程为.

(1)求的直角坐标系方程;

(2)若直线与圆交于两点,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知如图1所示,在边长为12的正方形,中,,且,分别交于点,将该正方形沿,折叠,使得重合,构成如图2 所示的三棱柱,在该三棱柱底边上有一点,满足; 请在图2 中解决下列问题:

(I)求证:当时,//平面

(Ⅱ)若直线与平面所成角的正弦值为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】己知函数.(是常数,且()

(Ⅰ)求函数的单调区间

(Ⅱ)处取得极值时,若关于的方程上恰有两个不相等的实数根,求实数的取值范围

(Ⅲ)求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知正方体的棱长为2,则以下四个命题中错误的是

A. 直线为异面直线 B. 平面

C. D. 三棱锥的体积为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在一项研究中,为尽快攻克某一课题,某生物研究所分别设立了甲、乙两个研究小组同时进行对比试验,现随机在这两个小组各抽取40个数据作为样本,并规定试验数据落在[495,510)之内的数据作为理想数据,否则为不理想数据.试验情况如表所示

(1)由以上统计数据完成下面2×2列联表;

(2)判断是否有90%的把握认为抽取的数据为理想数据与对两个研究小组的选择有关;说明你的理由;(下面的临界值表供参考)

(参考公式:其中n=a+b+c+d)

查看答案和解析>>

同步练习册答案