【题目】设函数(,为实数).
(1)若为偶函数,求实数的值;
(2)设,求函数的最小值(用表示).
科目:高中数学 来源: 题型:
【题目】一幢高楼上安放了一块高约10 米的 LED 广告屏,一测量爱好者在与高楼底部同一水平线上的 C 处测得广告屏顶端A 处的仰角为 31.80°,再向大楼前进 20 米到 D 处,测得广告屏顶端 A 处的仰角为 37.38°(人的高度忽略不计).
(1)求大楼的高度(从地面到广告屏顶端)(精确到 1 米);
(2)若大楼的前方是一片公园空地,空地上可以安放一些长椅,为使坐在其中一个长椅上观看广告屏最清晰(长 椅的高度忽略不计),长椅需安置在距大楼底部 E 处多远?已知视角 ∠AMB( M 为观测者的位置, B 为广告屏 底部)越大,观看得越清晰.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若定义在R上的函数满足:对于任意实数x、y,总有恒成立,我们称为“类余弦型”函数.
已知为“类余弦型”函数,且,求和的值;
在的条件下,定义数列2,3,求的值.
若为“类余弦型”函数,且对于任意非零实数t,总有,证明:函数为偶函数,设有理数,满足,判断和的大小关系,并证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某购物商场分别推出支付宝和微信“扫码支付”购物活动,活动设置了一段时间的推广期,由于推广期内优惠力度较大,吸引越来越多的人开始使用“扫码支付”.现统计了活动刚推出一周内每天使用扫码支付的人次,用表示活动推出的天数,表示每天使用扫码支付的人次,统计数据如下表所示:
(1)根据散点图判断,在推广期内,扫码支付的人次关于活动推出天数的回归方程适合用来表示,求出该回归方程,并预测活动推出第天使用扫码支付的人次;
(2)推广期结束后,商场对顾客的支付方式进行统计,结果如下表:
支付方式 | 现金 | 会员卡 | 扫码 |
比例 |
商场规定:使用现金支付的顾客无优惠,使用会员卡支付的顾客享受折优惠,扫码支付的顾客随机优惠,根据统计结果得知,使用扫码支付的顾客,享受折优惠的概率为,享受折优惠的概率为,享受折优惠的概率为.现有一名顾客购买了元的商品,根据所给数据用事件发生的频率来估计相应事件发生的概率,估计该顾客支付的平均费用是多少?
参考数据:设,,,
参考公式:对于一组数据,,…,,其回归直线的斜率和截距的最小二乘估计公式分别为:,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】平面内任意一点到两定点、的距离之和为.
(1)若点是第二象限内的一点且满足,求点的坐标;
(2)设平面内有关于原点对称的两定点,判别是否有最大值和最小值,请说明理由?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,正四棱柱ABCD﹣A1B1C1D1中,O是BD的中点,E是棱CC1上任意一点.
(1)证明:BD⊥A1E;
(2)如果AB=2,,OE⊥A1E,求AA1的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知各项均为正数的数列的前项和为且满足:
(1)求数列的通项公式;
(2)设求的值;
(3)是否存在大于2的正整数使得?若存在,求出所有符合条件的若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com