精英家教网 > 高中数学 > 题目详情

【题目】设函数为实数).

1)若为偶函数,求实数的值;

2)设,求函数的最小值(用表示).

【答案】(1);(2).

【解析】

1)直接利用函数的性质的应用和函数的恒成立问题的应用求出a的值.

2)利用分类讨论思想的应用求出函数的最小值.

1)若函数fx)为偶函数,则f(﹣x)=fx)对于任意实数恒成立.

即:x2+|xa|x2+|xa|,所以|x+a||xa|恒成立,即a0

2)在的基础上,讨论xa的符号,

①当xa时,fx)=x2+xa,所以函数fx)的对称轴为x,此时

②当xa时,fx)=x2x+a,所以函数fx)的对称轴为x,此时

又由于a时,,所以函数fx)的最小值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】一幢高楼上安放了一块高约10 米的 LED 广告屏,一测量爱好者在与高楼底部同一水平线上的 C 处测得广告屏顶端A 处的仰角为 31.80°,再向大楼前进 20 米到 D 处,测得广告屏顶端 A 处的仰角为 37.38°(人的高度忽略不计).

1)求大楼的高度(从地面到广告屏顶端)(精确到 1 米);

2)若大楼的前方是一片公园空地,空地上可以安放一些长椅,为使坐在其中一个长椅上观看广告屏最清晰(长 椅的高度忽略不计),长椅需安置在距大楼底部 E 处多远?已知视角 AMB M 为观测者的位置, B 为广告屏 底部)越大,观看得越清晰.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在正项数列中,首项,点在双曲线上,数列中,点在直线上,其中是数列的前项和.

(1)求数列的通项公式;

(2)若,求证: 数列为递减数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若函数有唯一的极小值点,求实数的取值范围;

2)求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若定义在R上的函数满足:对于任意实数xy,总有恒成立,我们称类余弦型函数.

已知类余弦型函数,且,求的值;

的条件下,定义数列23的值.

类余弦型函数,且对于任意非零实数t,总有,证明:函数为偶函数,设有理数满足,判断的大小关系,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某购物商场分别推出支付宝和微信扫码支付购物活动,活动设置了一段时间的推广期,由于推广期内优惠力度较大,吸引越来越多的人开始使用扫码支付.现统计了活动刚推出一周内每天使用扫码支付的人次,用表示活动推出的天数,表示每天使用扫码支付的人次,统计数据如下表所示:

1)根据散点图判断,在推广期内,扫码支付的人次关于活动推出天数的回归方程适合用来表示,求出该回归方程,并预测活动推出第天使用扫码支付的人次;

2)推广期结束后,商场对顾客的支付方式进行统计,结果如下表:

支付方式

现金

会员卡

扫码

比例

商场规定:使用现金支付的顾客无优惠,使用会员卡支付的顾客享受折优惠,扫码支付的顾客随机优惠,根据统计结果得知,使用扫码支付的顾客,享受折优惠的概率为,享受折优惠的概率为,享受折优惠的概率为.现有一名顾客购买了元的商品,根据所给数据用事件发生的频率来估计相应事件发生的概率,估计该顾客支付的平均费用是多少?

参考数据:设

参考公式:对于一组数据,其回归直线的斜率和截距的最小二乘估计公式分别为:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】平面内任意一点到两定点的距离之和为.

(1)若点是第二象限内的一点且满足,求点的坐标;

(2)设平面内有关于原点对称的两定点,判别是否有最大值和最小值,请说明理由?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正四棱柱ABCDA1B1C1D1中,OBD的中点,E是棱CC1上任意一点.

1)证明:BDA1E

2)如果AB=2OEA1E,求AA1的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知各项均为正数的数列的前项和为且满足:

(1)求数列的通项公式;

(2)的值;

(3)是否存在大于2的正整数使得?若存在,求出所有符合条件的若不存在,请说明理由.

查看答案和解析>>

同步练习册答案