【题目】已知整数对排列如下:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),(1,5),(2,4)......则第60个整数对是( )
A.(5,7)B.(11,5)C.(7,5)D.(5,11)
科目:高中数学 来源: 题型:
【题目】某地区今年1月,2月,3月患某种传染病的人数分别为42,48,52.为了预测以后各月的患病人数,甲选择了模型,乙选择了模型,其中为患病人数,为月份数,a,b,c,p,q,r都是常数.结果4月,5月,6月份的患病人数分别为54,57,58.
(1)求a,b,c,p,q,r的值;
(2)你认为谁选择的模型好.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数.
(Ⅰ)当a=1时,写出的单调递增区间(不需写出推证过程);
(Ⅱ)当x>0时,若直线y=4与函数的图像交于A,B两点,记,求的最大值;
(Ⅲ)若关于x的方程在区间(1,2)上有两个不同的实数根,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,曲线的参数方程为为参数,,直线的参数方程为 为参数).
(1)若与相交,求实数的取值范围;
(2)若,设点在曲线上,求点到的距离的最大值,并求此时点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对数函数(且)和指数函数(且)互为反函数.已知函数,其反函数为.
(1)若函数定义域为,求实数的取值范围.
(2)若为定义在上的奇函数,且时,.求的解析式.
(3)定义在上的函数,如果满足:对任意的,存在常数,都有成立,则称函数是上的有界函数,其中为函数的上界.若函数,当时,探究函数在上是否存在上界,若存在求出的取值范围,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在正方体中,是的中点.
(1)求证:平面;
(2)求证:平面平面.(只需在下面横线上填写给出的如下结论的序号:①平面,②平面,③,④,⑤)
证明:(1)设,连接.因为底面是正方形,所以为的中点,又是的中点,所以_________.因为平面,____________,所以平面.
(2)因为平面平面,所以___________,因为底面是正方形,所以_______,又因为平面平面,所以_________.又平面,所以平面平面.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校100名学生期中考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是:[50,60][60,70][70,80][80,90][90,100].
(1)求图中a的值;
(2)根据频率分布直方图,估计这100名学生语文成绩的平均分;
(3)若这100名学生语文成绩某些分数段的人数(x)与数学成绩相应分数段的人数(y)之比如下表所示,求数学成绩在[50,90)之外的人数.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com