精英家教网 > 高中数学 > 题目详情
在直四棱柱ABCD—A1B1C1D1中,已知底面四边形
ABCD是边长为3的菱形,且DB=3,A1A=2,点E
在线段BC上,点F在线段D1C1上,且BE=D1F=1.
(1)求证:直线EF∥平面B1D1DB;
(2)求二面角F—DB—C的余弦值.
证明:
(1)在B1C1上取点
使得





(2)过F作

,连结FG
为二面角F—DB—C的平面角
依题:

练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)
如图,已知菱形的边长为,.将菱形沿对角线折起,使,得到三棱锥.

(Ⅰ)若点是棱的中点,求证:平面
(Ⅱ)求二面角的余弦值;
(Ⅲ)设点是线段上一个动点,试确定点的位置,使得,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

、如图,四棱锥S—ABCD的底面是边长为1的正方形,SD垂直于底面ABCD,SD=1,SB=.

(I)求证BCSC; (II)求平面SBC与平面ABCD所成二面角的大小;
(III)设棱SA的中点为M,求异面直线DM与SB所成角的大小

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

.如图5(1)是一个水平放置的正三棱柱ABC—A1B1C1,D是棱BC的中点,正三棱柱的正(主)视图如图5(2)。
(1)求正三棱柱ABC—A1B1C1的体积;
(2)证明:A1B//平面ADC1

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

本题(1)(2)(3)三个选答题,每小题5分,请考生任选1题作答,如果多做,则按所做的前1题计分.
(1)(选修4-1,几何证明选讲)如图,在直角梯形ABCD中,DC∥AB,CB⊥AB,AB=AD=a,CD=,点E,F分别为线段AB,CD的中点,则EF="          " .

(2)(选修4-4,坐标系与参数方程)在极坐标系(中,曲线的交点的极坐标为         .
(3)(选修4-1,不等式选讲)
已知函数.若不等式,则实数的值为        .

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

.平面内条直线把平面分成部分;条直线把平面分成部分;条直线把平面分成部分。类比空间个平面把空间分成        部分;个平面把空间分成        部分;个平面把空间分成                     部分。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图1,在正三角形ABC中,D、E、F分别为各边的中点,G、H、I、J分别为AF、AD、BE、DE的中点.将△ABC沿DE、EF、DF折成三棱锥以后,GH与IJ所成角的度数为(   )

A.90°            B.60°            C.45°         D.0°

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)
如图,SD垂直于正方形ABCD所在的平面,AB=1,

(1)求证:
(2)设棱SA的中点为M,求异面直线DM与SC所成角的大小。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

( (本小题满分12分)
在棱长为4的正方体ABCD-A1B1C1D1中,O是正方形A1B1C1D1的中心,点P在棱CC1上,且CC1=4CP.

(1)、求直线AP与平面BCC1B1所成的角的大小(结果用反三角函数值表示);
(2)、求点P到平面ABD1的距离.

查看答案和解析>>

同步练习册答案