A. | 24 | B. | 36 | C. | 48 | D. | 60 |
分析 先根据复数的运算法则求出,再根据模的计算公式求出,关键是转化为(a2+b2)(c2+d2)≥$\frac{(a+b)^{2}}{2}$•$\frac{(c+d)^{2}}{2}$,根据基本不等式即可求出最小值.
解答 解:(a+bi)(c+di)=ac-bd+(ad+bc)i,
∴|(a+bi)(c+di)|2=(ac-bd)2+(ad+bc)2=a2c2+b2d2+a2d2+b2c2=(a2+b2)(c2+d2)≥$\frac{(a+b)^{2}}{2}$•$\frac{(c+d)^{2}}{2}$=$\frac{{8}^{2}}{2}•\frac{1{2}^{2}}{2}$=482,当且仅当a=b=4,c=d=6时取等号,
∴|(a+bi)(c+di)|的最小值是48,
故选:C.
点评 本题考查了复数的运算法则和基本不等式,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 4 | B. | 8 | C. | 12 | D. | 16 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{\sqrt{26}}{2}$ | B. | $\frac{13}{5}$ | C. | $\sqrt{10}$ | D. | $\sqrt{17}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com