精英家教网 > 高中数学 > 题目详情
过点P(1,0)作曲线C:y=xk(x∈(0,+∞),k∈N*,k>1)的切线,切点为M1,设M1在x轴上的投影是点P1;又过点P1作曲线C的切线,切点为M2,设M2在x轴上的投影是点P2;…;依此下去,得到一系列点M1,M2,…Mn,…;设它们的横坐标a1,a2,…,
an…构成数列为{an}.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)求证:
(Ⅲ)当k=2时,令,求数列{bn}的前n项和Sn
【答案】分析:(Ⅰ)对y=xk求导数,得y′=kxk-1,切点是Mn(an,ank)的切线方程是y-ank=kank-1(x-an).当n=1时,;当n>1时,得.由此能求出数列{an}的通项公式.
( II)应用二项式定理,得
( III)当k=2时,an=2n,数列{bn}的前n项和Sn=,利用错位相减法能够得到Sn=
解答:解:(Ⅰ)对y=xk求导数,
得y′=kxk-1
点是Mn(an,ank)的切线方程是y-ank=kank-1(x-an).…(2分)
当n=1时,切线过点P(1,0),
即0-a1k=ka1k-1(1-a1),

当n>1时,切线过点Pn-1(an-1,0),
即0-ank=kank-1(an-1-an),

所以数列{an}是首项,公比为的等比数列,
所以数列{an}的通项公式为.…(4分)
( II)应用二项式定理,得.…(8分)
( III)当k=2时,an=2n
数列{bn}的前n项和Sn=
同乘以,得=
两式相减,…(10分)
=
所以Sn=.…(12分)
点评:本题考查数列的通项公式的求法,证明,求数列的前n项和.对数学思维的要求比较高,要认真审题,注意错位相减法的灵活运用,本题有一定的探索性.综合性强,难度大,易出错.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,过点P(1,0)作曲线C:y=xk(x∈(0,+∞),k∈N*,k>1)的切线,切点为Q1,设Q1点在x轴上的投影是点P1;又过点P1作曲线C的切线,切点为Q2,设Q2在x轴上的投影是P2;…;依此下去,得到一系列点Q1,Q2,…,Qn,…,设点Qn的横坐标为an
(Ⅰ)试求数列{an}的通项公式an;(用k的代数式表示)
(Ⅱ)求证:an≥1+
n
k-1

(Ⅲ)求证:
n
i=1
i
ai
k2-k
(注:
n
i=1
ai=a1+a2+…+an
).

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•锦州一模)过点P(1,0)作曲线C:y=x2(x>0)的切线,切点为Q1,没Q1在x轴上的投影是P1,又过P1,作曲线C的切线,切点为Q2,设Q2在x轴上的投影是P2…,依次下去,得到一系列点Q1Q2,…Qn,设Qn的横坐标为an
(I)求a1的值及{an}的通项公式;
(Ⅱ)令bn=
an(an-1)(an+1-1)
,设数列{bn}的前n项和为Tn,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

过点P(1,0)作曲线C:y=x2(x∈(0,+∞)的切线,切点为M1,设M1在x轴上的投影是点P1.又过点P1作曲线C的切线,切点为M2,设M2在x轴上的投影是点P2,….依此下去,得到一系列点M1,M2…,Mn,…,设它们的横坐标a1,a2,…,an,…,构成数列为{an}.
(1)求证数列{an}是等比数列,并求其通项公式;
(2)令bn=
nan
,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•韶关二模)如图,过点P(1,0)作曲线C:y=x2(x∈(0,+∞))的切线,切点为Q1,设点Q1在x轴上的投影是点P1;又过点P1作曲线C的切线,切点为Q2,设Q2在x轴上的投影是P2;…;依此下去,得到一系列点Q1,Q2,Q3-Qn,设点Qn的横坐标为an
(1)求直线PQ1的方程;
(2)求数列{an}的通项公式;
(3)记Qn到直线PnQn+1的距离为dn,求证:n≥2时,
1
d1
+
1
d2
+…
1
dn
>3.

查看答案和解析>>

科目:高中数学 来源: 题型:

过点P(1,0)作曲线C:y=x2(x>0)的切线,切点为M1,设点M1在x轴上的投影是点P1,又过点P1作曲线C的切线,切点为M2,设点M2在x轴上的投影是点P2,…依此下去,得到点列P1,P2,P3,…,记它们的横坐标a1,a2,a3,…构成数列{an}.
(Ⅰ)求an与an-1(n≥2)的关系式;
(Ⅱ)令bn=
nan
,求数列{bn}的前n项和.

查看答案和解析>>

同步练习册答案