精英家教网 > 高中数学 > 题目详情

【题目】已知定义在R上的函数ygx)满足条件gx+3)=﹣gx),且函数为奇函数,给出以下四个命题:

1)函数gx)是周期函数;

2)函数gx)的图象关于点对称;

3)函数gx)为R上的偶函数;

4)函数gx)为R上的单调函数.

其中真命题的序号为_____(写出所有真命题的序号).

【答案】1)(2)(3

【解析】

,可得,可得函数的周期性,利用奇函数的图像的对称性及函数图像的平移变换,可得函数的对称中心,结合这些条件可探讨函数的奇偶性和单调性,可得答案.

解:(1)由题意:,可得

故函数是周期函数,故(1)正确;

2)由函数为奇函数,其图像关于原点对称,函数是由向右平移个单位得到的,可得函数的图象关于点对称,故(2)正确;

3)由(2)得函数的图象关于点对称,可得:

,可得,故函数R上的偶函数,

故(3)正确;

4)由(3)得函数R上的偶函数,其图像关于轴对称,所以R上不是单调函数,故(4)不正确;

故答案为:(1)(2)(3).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】全国文明城市,简称文明城市,是指在全面建设小康社会中市民整体素质和城市文明程度较高的城市.全国文明城市称号是反映中国大陆城市整体文明水平的最高荣誉称号.为普及相关知识,争创全国文明城市,某市组织了文明城市知识竞赛,现随机抽取了甲、乙两个单位各5名职工的成绩(单位:分)如下表:

(1)根据上表中的数据,分别求出甲、乙两个单位5名职工的成绩的平均数和方差,并比较哪个单位的职工对文明城市知识掌握得更好;

(2)用简单随机抽样法从乙单位5名职工中抽取2人,求抽取的2名职工的成绩差的绝对值不小于4的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从甲、乙两品种的棉花中各抽测了25根棉花的纤维长度(单位:mm),得到如图5的茎叶图,整数位为茎,小数位为叶,如27.1mm的茎为27,叶为1.

(1)试比较甲、乙两种棉花的纤维长度的平均值的大小及方差的大小;(只需写出估计的结论,不需说明理由)

(2)将棉花按纤维长度的长短分成七个等级,分级标准如表:

试分别估计甲、乙两种棉花纤维长度等级为二级的概率;

(3)为进一步检验甲种棉花的其它质量指标,现从甲种棉花中随机抽取4根,记为抽取的棉花纤维长度为二级的根数,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示的曲线图是2020125日至2020212日陕西省及西安市新冠肺炎累计确诊病例的曲线图,则下列判断正确的是(

A.131日陕西省新冠肺炎累计确诊病例中西安市占比超过了

B.125日至212日陕西省及西安市新冠肺炎累计确诊病例都呈递增趋势

C.22日后到210日陕西省新冠肺炎累计确诊病例增加了97

D.28日到210日西安市新冠肺炎累计确诊病例的增长率大于26日到28日的增长率

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018614日,世界杯足球赛在俄罗斯拉开帷幕,世界杯给俄罗斯经济带来了一定的增长,某纪念商品店的销售人员为了统计世界杯足球赛期间商品的销售情况,随机抽查了该商品商店某天200名顾客的消费金额情况,得到如图频率分布表:将消费顾客超过4万卢布的顾客定义为足球迷”,消费金额不超过4万卢布的顾客定义为“非足球迷”。

消费金额/万卢布

合计

顾客人数

9

31

36

44

62

18

200

(1)求这200名顾客消费金额的中位数与平均数(同一组中的消费金额用该组的中点值作代表;

(2)该纪念品商店的销售人员为了进一步了解这200名顾客喜欢纪念品的类型,采用分层抽样的方法从“非足球迷”,“足球迷”中选取5人,再从这5人中随机选取3人进行问卷调查,则选取的3人中“非足球迷”人数的分布列和数学期望。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线的参数方程为(为参数)。在极坐标系(与直角坐标系取相同的长度单位,且以原点为极点,以轴正半轴为极轴)中,圆的极坐标方程为

1)求直线的普通方程和圆的直角坐标方程;

2)设圆与直线交于两点,若点的坐标为,求

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示1,已知四边形ABCD满足EBC的中点.沿着AE翻折成,使平面平面AECDFCD的中点,如图所示2.

1)求证:平面

2)求AE到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,为等边三角形,,且.

1)求证:平面平面

2)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设曲线是焦点在轴上的椭圆,两个焦点分别是是,且是曲线上的任意一点,且点到两个焦点距离之和为4.

1)求的标准方程;

2)设的左顶点为,若直线与曲线交于两点不是左右顶点),且满足,求证:直线恒过定点,并求出该定点的坐标.

查看答案和解析>>

同步练习册答案