精英家教网 > 高中数学 > 题目详情
17.已知实数a≠0,函数f(x)=$\left\{\begin{array}{l}{2x+a,x<1}\\{-x-2a,x≥1}\end{array}\right.$,若f(1-a)=f(1+a),则以直线x=a为准线的抛物线的标准方程是y2=-6x.

分析 对a分类求出满足f(1-a)=f(1+a)的a的值,得到抛物线准线,由此求得以直线x=a为准线的抛物线的标准方程.

解答 解:∵实数a≠0,函数f(x)=$\left\{\begin{array}{l}{2x+a,x<1}\\{-x-2a,x≥1}\end{array}\right.$,
①若a>0,则1-a<1,1+a>1,又f(1-a)=f(1+a),
∴2(1-a)+a=-(1+a)+2a,解得a=$\frac{3}{2}$;
②若a<0,则1-a>1,1+a<1,又f(1-a)=f(1+a),
∴2(1+a)+a=-(1-a)+2a,解得a无解;
∴a=$\frac{3}{2}$.
则以直线x=a为准线的抛物线的标准方程是y2=-6x.
故答案为:y2=-6x.

点评 本题考查分段函数的应用,考查了抛物线方程的求法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.某农场规划将果树种在正方形的场地内.为了保护果树不被风吹,决定在果树的周围种松树. 在如图里,你可以看到规划种植果树的列数(n),果树数量及松树数量的规律:
(1)按此规律,n=5时果树数量及松树数量分别为多少;并写出果树数量an,及松树数量bn关于n的表达式.
(2)定义:f(n+1)-f(n)(n∈N*)为f(n)增加的速度;现农场想扩大种植面积,问:哪种树增加的速度会更快?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设全集I=R,A={x|x>1},B={x|x≤2},求A∩B,A∪B,∁UA,∁UB.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若4sin2α-5sinαcosα-cos2α=2,则tanα=3或$-\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(α>b>0)的长半轴长为2,离心率为$\frac{\sqrt{3}}{2}$.
(I)求椭圆C的方程;
(2)直线y=kx+2与椭圆C交于A,B两个不同点,点E(1,0)在以AB为直径的圆的外部,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.函数y=2log${\;}_{\frac{1}{2}}$2x-2log${\;}_{\frac{1}{2}}$x+3的单调递增区间为[$\frac{\sqrt{2}}{2}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数g(x)=3x+a•3-x,x∈R.

(1)若f(x)是R上的偶函数,求a的值;
(2)若a=0,在给定的坐标系中画出函数g(x)=$\left\{\begin{array}{l}{f(x)+1(x<0)}\\{-x+2(x≥0)}\end{array}\right.$的图象(不列表)并指出方程g(x)-m=0有两解时m的取值范围;
(3)若a<0,判断函数f(x)在定义域内的单调性,并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知动圆C恒过定点F(a,0),且与直线1:x=-a,(a>0)相切,
(I)求动圆圆心C的轨迹E的方程;
(Ⅱ)过点F的直线交轨迹E于A,B两点,直线OA,OB分别与直线x=-a交于M,N两点,求证:以MN为直径的圆恒过定点并求定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知a>0,b>0,若a+b=4,则(  )
A.a2+b2有最小值B.$\sqrt{ab}$有最小值C.$\frac{1}{a}+\frac{1}{b}$有最大值D.$\frac{1}{{\sqrt{a}+\sqrt{b}}}$有最大值

查看答案和解析>>

同步练习册答案