精英家教网 > 高中数学 > 题目详情
8.一个几何体的三视图如图所示,则该几何体的表面积为(  )
A.64+8πB.48+12πC.48+8πD.48+12π

分析 该几何体为棱柱与圆柱的组合体,几何体的表面积为棱柱的表面积加上圆柱的侧面积.

解答 解:由三视图可知该几何体的下部分是底面为边长是4,高是2的四棱柱,上部分是底面直径为4,高为2的圆柱,
∴S=4×4×2+4×4×2+4π×2=64+8π.
故选A.

点评 本题考查了空间几何体的三视图和结构特征,表面积计算,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.请你用逻辑联结词“且”、“或”、“非”构造三个命题,并说出它们的真假,不必证明.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知一个空间几何体的三视图如图所示,根据图中标出的尺寸,可得这个几何体的体积是(  )
A.2B.4C.6D.12

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.计算矩阵的乘积$(\begin{array}{l}{3}&{-1}&{6}&{2}\\{-2}&{0}&{1}&{-4}\end{array})$$(\begin{array}{l}{1}&{3}&{-2}\\{0}&{1}&{-3}\\{3}&{0}&{5}\\{2}&{-1}&{4}\end{array})$=$[\begin{array}{l}{25}&{6}&{35}\\{-7}&{-2}&{-7}\end{array}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,四棱锥P-ABCD中,底面ABCD为矩形,AD=PD=2$\sqrt{3}$,PB=AB=6,点P在底面的正投影在DC上.
(I)证明:BD⊥PA;
(Ⅱ)求直线AP与平面PBC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.某个几何体的三视图如图所示,则该几何体的体积是1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知,若f(x)=$\left\{\begin{array}{l}{x+2(x≤-1)}\\{{x}^{2}(-1<x<2)}\\{2x(x≥2)}\end{array}\right.$,则函数的值域是R.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设实数x,y满足$\left\{\begin{array}{l}{y≥x-1}\\{x+y≥3}\\{y≤3}\end{array}\right.$,则z=x2+y2的取值范围是[$\frac{9}{2}$,25].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.求一条直线经过点A(2,-3),并且它的斜率等于直线$\sqrt{3}$y-x=0的斜率的直线方程.

查看答案和解析>>

同步练习册答案