【题目】如图,在三棱柱中, 平面. , , , , 分别为和的中点, 为侧棱上的动点.
()求证:平面平面.
()若为线段的中点,求证: 平面.
()试判断直线与平面是否能够垂直.若能垂直,求的值,若不能垂直,请说明理由.
【答案】(1)见解析;(2)见解析;(3)见解析
【解析】试题分析:(1)由已知推导出, ,故而可得平面,由此能证明平面平面;(2)取中点,连结, , , ,可得到四边形为平行四边形,紧接着证明平面平面,故而可得结论;(3)假设平面,则,首先证明,接着得到,然后根据得到,,从而得到直线与平面不能垂直.
试题解析:()证明:由已知,三棱柱为直三棱柱,∴平面,
∵平面,∴,∵, 为中点,∴,
∵,∴平面,∵平面,∴平面平面.
()证明:取中点,连结, , ,
∵, 分别为, 中点,∴,同理,
∴,∴平面,连结,
∵, 分别为与中点,∴,
∴四边形为平行四边形,∴,∴平面,
∵,∴平面平面,∵平面,∴平面.
()若平面,则,
∵, ,∴,
∴,
∵, ,∴, ,
∵,∴即,
∴,与为棱上一点矛盾,∴直线与平面不能垂直.
科目:高中数学 来源: 题型:
【题目】对某班一次测验成绩进行统计,如下表所示:
分数段 | [40,50) | [50,60) | [60,70) | [70,80) | [80,90) | [90,100] |
概率 | 0.02 | 0.04 | 0.17 | 0.36 | 0.25 | 0.15 |
(1)求该班成绩在[80,100]内的概率;
(2)求该班成绩在[60,100]内的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】小赵和小王约定在早上7:00至7:15之间到某公交站搭乘公交车去上学,已知在这段时间内,共有2班公交车到达该站,到站的时间分别为7:05,7:15,如果他们约定见车就搭乘,则小赵和小王恰好能搭乘同一班公交车去上学的概率为( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲、乙两人的各科成绩如图中的茎叶图所示,则下列说法不正确的是( )
A. 甲、乙两人的各科平均分相同
B. 甲各科成绩的中位数是83,乙各科成绩的中位数是85
C. 甲各科成绩比乙各科成绩稳定
D. 甲各科成绩的众数是89,乙各科成绩的众数为87
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知点分别是的边的中点,连接,现将沿折叠至的位置,连接.记平面与平面的交线为,二面角大小为.
(1)证明: 平面;
(2)证明:平面平面;
(3)求平面与平面所成锐二面角大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】从某工厂抽取50名工人进行调查,发现他们一天加工零件的个数在50至350之间,现按生产的零件个数将他们分成六组,第一组[50,100),第二组[100,150),第三组[150,200),第四组[200,250),第五组[250,300),第六组[300,350],相应的样本频率分布直方图如图所示.
(1)求频率分布直方图中x的值;
(2)设位于第六组的工人为拔尖工,位于第五组的工人为熟练工,现用分层抽样的方法在这两类工人中抽取一个容量为6的样本,从样本中任意取两个,求至少有一个拔尖工的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,Rt△AOB的直角边OA在x轴上,OA=2,AB=1,将Rt△AOB绕点O逆时针旋转90°得到,抛物线经过B、D两点.
(1)求二次函数的解析式;
(2)连接BD,点P是抛物线上一点,直线OP把△BOD的周长分成相等的两部分,求点P的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com