精英家教网 > 高中数学 > 题目详情

【题目】如图,在三棱柱中, 平面 分别为的中点, 为侧棱上的动点.

)求证:平面平面

)若为线段的中点,求证: 平面

)试判断直线与平面是否能够垂直.若能垂直,求的值,若不能垂直,请说明理由.

【答案】(1)见解析;(2)见解析;(3)见解析

【解析】试题分析:1)由已知推导出 故而可得平面,由此能证明平面平面;(2中点,连结 ,可得到四边形为平行四边形,紧接着证明平面平面,故而可得结论;3)假设平面,则,首先证明,接着得到然后根据得到,从而得到直线与平面不能垂直.

试题解析:)证明:由已知,三棱柱为直三棱柱,平面

平面 中点,

平面平面平面平面

)证明:取中点,连结

分别为 中点,,同理

平面,连结

分别为中点,

四边形为平行四边形,平面

平面平面平面平面

)若平面,则

,与为棱上一点矛盾,直线与平面不能垂直.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】对某班一次测验成绩进行统计,如下表所示:

分数段

[40,50)

[50,60)

[60,70)

[70,80)

[80,90)

[90,100]

概率

0.02

0.04

0.17

0.36

0.25

0.15

(1)求该班成绩在[80,100]内的概率;

(2)求该班成绩在[60,100]内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=|x+ |+|x﹣a+1|(a>0是常数).
(Ⅰ)证明:f(x)≥1;
(Ⅱ)若f(3)< ,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】小赵和小王约定在早上7:007:15之间到某公交站搭乘公交车去上学,已知在这段时间内,共有2班公交车到达该站,到站的时间分别为7:05,7:15,如果他们约定见车就搭乘,则小赵和小王恰好能搭乘同一班公交车去上学的概率为(

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两人的各科成绩如图中的茎叶图所示,则下列说法不正确的是(  )

A. 甲、乙两人的各科平均分相同

B. 甲各科成绩的中位数是83,乙各科成绩的中位数是85

C. 甲各科成绩比乙各科成绩稳定

D. 甲各科成绩的众数是89,乙各科成绩的众数为87

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆过点,且离心率

(1)求椭圆方程;

(2)若直线与椭圆交于不同的两点,且线段的垂直平分线过定点,求的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知点分别是的边的中点,连接,现将沿折叠至的位置,连接.记平面与平面的交线为,二面角大小为.

(1)证明: 平面

(2)证明:平面平面

3求平面与平面所成锐二面角大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从某工厂抽取50名工人进行调查,发现他们一天加工零件的个数在50至350之间,现按生产的零件个数将他们分成六组,第一组[50,100),第二组[100,150),第三组[150,200),第四组[200,250),第五组[250,300),第六组[300,350],相应的样本频率分布直方图如图所示.

(1)求频率分布直方图中x的值;

(2)设位于第六组的工人为拔尖工,位于第五组的工人为熟练工,现用分层抽样的方法在这两类工人中抽取一个容量为6的样本,从样本中任意取两个,求至少有一个拔尖工的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,Rt△AOB的直角边OA在x轴上,OA=2,AB=1,将Rt△AOB绕点O逆时针旋转90°得到,抛物线经过B、D两点.

(1)求二次函数的解析式;

(2)连接BD,点P是抛物线上一点,直线OP把BOD的周长分成相等的两部分,求点P的坐标.

查看答案和解析>>

同步练习册答案