精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆C 的左、右顶点分别为,上、下顶点分别为,四边形的面积为,坐标原点O到直线的距离为.

1)求椭圆C的方程;

2)若直线l与椭圆C相交于AB两点,点P为椭圆C上异于AB的一点,四边形为平行四边形,探究:平行四边形的面积是否为定值?若是,求出此定值;若不是,请说明理由.

【答案】1;(2)四边形的面积为定值3.

【解析】

1)由已知设直线的方程为,再利用已知条件列方程组,求出即可得到椭圆的方程;

2)当直线的斜率不存在时,直线的方程为,此时,当直线的斜率存在时,设

联立,可得,利用根与系数的关系,求出弦长AB,再结合点到直线的距离公式求解三角形的面积,可推出结论.

1)直线的方程为

由题意可得,解得

∴椭圆C的方程为

2)当直线的斜率不存在时,直线的方程为,此时

当直线的斜率存在时,设

联立,可得

∵四边形为平行四边形,∴,∴

∵点P在椭圆上,∴,整理得

原点O到直线的距离

综上,四边形的面积为定值3

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】A、B两人进行一局围棋比赛,A获得的概率为0.8,若采用三局两胜制举行一次比赛,现采用随机模拟的方法估计B获胜的概率.先利用计算器或计算机生成0到9之间取整数值的随机数,用0,1,2,3,4,5,6,7表示A获胜;8,9表示B获胜,这样能体现A获胜的概率为0.8.因为采用三局两胜制,所以每3个随机数作为一组.

例如,产生30组随机数:034 743 738 636 964 736 614 698 637 162 332 616 804 560 111 410 959 774 246 762 428 114 572 042 533 237 322 707 360 751,据此估计B获胜的概率为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在五面体中,平面平面.

1)求证:

2)若,且二面角的大小为,求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,圆的方程为,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,直线的极坐标方程为

1)求圆的极坐标方程与直线的直角坐标方程;

2)设直线与圆相交于两点,求圆处两条切线的交点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2020年新型冠状病毒肺炎蔓延全国,作为主要战场的武汉,仅用了十余天就建成了小汤山模式的火神山医院和雷神山医院,再次体现了中国速度.随着疫情发展,某地也需要参照小汤山模式建设临时医院,其占地是出一个正方形和四个以正方形的边为底边、腰长为400m的等腰三角形组成的图形(如图所示),为使占地面积最大,则等腰三角形的底角为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆经过点与直线相切,圆心的轨迹为曲线,过点做直线与曲线交于不同两点,三角形的垂心为点.

1)求曲线的方程;

2)求证:点在一条定直线上,并求出这条直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知三棱柱的侧棱和底面垂直,且所有顶点都在球O的表面上,侧面的面积为.给出下列四个结论:

①若的中点为E,则平面

②若三棱柱的体积为,则到平面的距离为3

③若,则球O的表面积为

④若,则球O体积的最小值为.

当则所有正确结论的序号是( )

A.①④B.②③C.①②③D.①③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两队进行排球比赛,采取五局三胜制(当一队赢得三场胜利时,该队获胜,比赛结束).根据前期比赛成绩可知在每一局比赛中,甲队获胜的概率为,乙队获胜的概率为.若前两局中乙队以领先,则下列说法中错误的是(

A.甲队获胜的概率为B.乙队以获胜的概率为

C.乙队以三比一获胜的概率为D.乙队以获胜的概率为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线为参数,),曲线为参数),相切于点,以坐标原点为极点,轴的非负半轴为极轴建立极坐标系.

1)求的极坐标方程及点的极坐标;

2)已知直线与圆交于两点,记的面积为的面积为,求的值.

查看答案和解析>>

同步练习册答案