精英家教网 > 高中数学 > 题目详情
对于任意n∈N*,抛物线y=(n2+n)x2-(2n+1)x+1与x轴交于An,Bn两点,以|AnBn|表示该两点的距离,则|A1B1|+|A2B2|+…+|A1999B1999|的值是( )
A.
B.
C.
D.
【答案】分析:根据函数抛物线方程令y=0求得x的关系式,代入两点间的距离公式可得到|AnBn|的关系式,然后代入到|A1B1|+|A2B2|+…+|A1999B1999|中即可得到答案.
解答:解:y=(n2+n)x2-(2n+1)x+1=[x-][x-]
令y=0,则x=
∴|AnBn|=-
∴|A1B1|+|A2B2|+…+|A1999B1999|=(1-)+(-)+…+(-
=(1-+-)+…+(-
=1-=
故选D
点评:本题主要考查数列求和的累加法.考查对基础知识的灵活运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知首项为x1的数列{xn}满足xn+1=
axnxn+1
(a为常数).
(1)若对于任意的x1≠-1,有xn+2=xn对于任意的n∈N*都成立,求a的值;
(2)当a=1时,若x1>0,数列{xn}是递增数列还是递减数列?请说明理由;
(3)当a确定后,数列{xn}由其首项x1确定,当a=2时,通过对数列{xn}的探究,写出“{xn}是有穷数列”的一个真命题(不必证明).说明:对于第3题,将根据写出真命题所体现的思维层次和对问题探究的完整性,给予不同的评分.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和为Sn,a1=1,对于任意的n≥2,恒有Sn=2Sn-1+n,(n∈N*
(1)求数列{an}的通项公式an
(2)若cn=
1
an+1-n-1
,证明:c1+c2+…+cn
23
12

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•成都模拟)设函数f(x)=x2+bln(x+1).
(Ⅰ)若函数y=f(x)在定义域上是单调函数,求b的取值范围;
(Ⅱ)若b=-1,证明对于任意的n∈N+,不等式
n
k=1
f(
1
k
)<1+
1
23
+
1
33
+…+
1
n3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•顺义区一模)已知数列{an}的前n项和为Sn,且点(n,Sn)在函数y=2x+1-2的图象上.
(I)求数列{an}的通项公式;
(II)设数列{bn}满足:b1=0,bn+1+bn=an,求数列{bn}的前n项和公式;
(III)在第(II)问的条件下,若对于任意的n∈N*不等式bn<λbn+1恒成立,求实数h(-1)=-
13
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,a1=1,且对于任意自然数n,都有an+1=an+n,求a100

查看答案和解析>>

同步练习册答案