精英家教网 > 高中数学 > 题目详情
(2010•潍坊三模)若将函数f(x)=tan(ωx+
π
4
)(0<ω<1)
的图象向右平移
π
6
个单位长度后与函数  g(x)=tan(ωx+
π
6
)
的图象重合,则函数y=f(x)的一个对称中心为(  )
分析:根据图象的平移求出平移后的函数解析式,与函数y=tan(ωx+
π
6
)的图象重合,比较系数,求出ω=6k+
1
2
(k∈Z),然后代入已知函数解析式中可求
解答:解:y=tan(ωx+
π
4
),向右平移
π
6
个单位可得:y=tan[ω(x-
π
6
)+
π
4
]=tan(ωx+
π
6

π
4
-
π
6
ω+kπ=
π
6

∴ω=6k+
1
2
(k∈Z),
又∵1>ω>0
∴当k=0时,ω=
1
2
,f(x)=tan(
1
2
x+
π
4

1
2
x+
π
4
=
2
,k∈Z可得x=kπ-
1
2
π
,k∈Z
当k=1时,x=
1
2
π
,一个对称中心(
1
2
π,0

故选B
点评:本题主要考查了三角函数的图象的平移,正切函数的对称性质的考查,属于三角函数性质的简单应用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2010•潍坊三模)已知椭圆x2+4y2=4与双曲线x2-2y2=a(a>0)的焦点重合,则该双曲线的离心率等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•潍坊三模)运行如图所示的程序框图输出的结果是(其中i是虚数单位)(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•潍坊三模)下列类比推理命题(R为实数集,C为复数集):
①“若a,b∈R,则a-b=0⇒a=b”类比推出“若a,b∈C,则a-b=0⇒a=b”;
②“若a,b∈R,则a-b>0⇒a>b”类比推出“若a,b∈C,则a-b>0⇒a>b”;
③“若a,b∈R,则(a+b)(a-b)=a2-b2”类比推出“若a,b∈C,则(a+b)(a-b)=a2-b2”;
④“若a,b∈R,则|a|=|b|⇒a=±b”类比推出“若a,b∈C,则|a|=|b|⇒a=±b”.
其中类比结论正确的个数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•潍坊三模)上海世博会期间,甲、乙等六名志愿者被分配到A、B、C、D四个不同的岗位服务,每个岗位至少一名志愿者,则甲、乙两人各自独立承担一个岗位工作的分配方法共有(  )

查看答案和解析>>

同步练习册答案