精英家教网 > 高中数学 > 题目详情
如图,有一个长方形地块ABCD,边AB为2km,AD为4km.,地块的一角是湿地(图中阴影部分),其边缘线AC是以直线AD为对称轴,以A为顶点的抛物线的一部分.现要铺设一条过边缘线AC上一点P的直线型隔离带EF,E,F分别在边AB,BC上(隔离带不能穿越湿地,且占地面积忽略不计).设点P到边AD的距离为t(单位:km),△BEF的面积为S(单位:km2).
(1)求S关于t的函数解析式,并指出该函数的定义域;
(2)是否存在点P,使隔离出的△BEF面积S超过3km2?并说明理由.
考点:导数在最大值、最小值问题中的应用,函数解析式的求解及常用方法
专题:导数的综合应用
分析:(1)如图,以A为坐标原点O,AB所在直线为x轴,建立平面直角坐标系,则C点坐标为(2,4).设边缘线AC所在抛物线的方程为y=ax2,把(2,4)代入,可得抛物线的方程为y=x2.由于y'=2x,可得过P(t,t2)的切线EF方程为y=2tx-t2.可得E,F点的坐标,S=
1
2
(2-
t
2
)(4t-t2)
,即可得出定义域.
(2)S=
1
2
(2-
t
2
)(4t-t2)
,利用导数在定义域内研究其单调性极值与最值即可得出.
解答: 解:(1)如图,以A为坐标原点O,AB所在直线为x轴,建立平面直角坐标系,则C点坐标为(2,4).
设边缘线AC所在抛物线的方程为y=ax2
把(2,4)代入,得4=a×22,解得a=1,
∴抛物线的方程为y=x2
∵y'=2x,
∴过P(t,t2)的切线EF方程为y=2tx-t2
令y=0,得E(
t
2
,0)
;令x=2,得F(2,4t-t2),
S=
1
2
(2-
t
2
)(4t-t2)

S=
1
4
(t3-8t2+16t)
,定义域为(0,2].
(2)S′=
1
4
(3t2-16t+16)=
3
4
(t-4)(t-
4
3
)

由S'(t)>0,得0<t<
4
3

∴S(t)在(0,
4
3
)
上是增函数,在(
4
3
,2]
上是减函数,
∴S在(0,2]上有最大值S(
4
3
)=
64
27

又∵
64
27
=3-
17
27
<3

∴不存在点P,使隔离出的△BEF面积S超过3km2
点评:本题考查了利用导数研究函数的单调性极值与最值切线的方程、抛物线方程,考查了分析问题与解决问题的能力,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

一个几何体的三视图如图所示,则几何体的体积为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在正项等比数列{an}中,log2a3+log2a6+log2a9=3,则a1•a11的值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和为Sn,且Sn=2-(
2
n
+1
)an(n∈N+).
求证:数列{
an
n
}是等比数列;
设数列{2nan}的前n项和为Tn,求数列{
1
Tn
}的前n项和为An

查看答案和解析>>

科目:高中数学 来源: 题型:

由无理数引发的数学危机一直延续到19世纪.直到1872年,德国数学家戴德金从连续性的要求出发,用有理数的“分割”来定义无理数(史称戴德金分割),并把实数理论建立在严格的科学基础上,才结束了无理数被认为“无理”的时代,也结束了持续2000多年的数学史上的第一次大危机.所谓戴德金分割,是指将有理数集Q划分为两个非空的子集M与N,且满足M∪N=Q,M∩N=∅,M中的每一个元素都小于N中的每一个元素,则称(M,N)为戴德金分割试判断,对于任一戴德金分割(M,N),下列选项中,不可能成 立的是(  )
A、M没有最大元素,N有一个最小元素
B、M没有最大元素,N也没有最小元素
C、M有一个最大元素,N有一个最小元素
D、M有一个最大元素,N没有最小元素

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=log3(x+3)-1(a>0,且a≠1)的图象恒过定点A,若点A在直线mx+ny+1=0上,其中m,n均大于0,则
1
m
+
2
n
的最小值为(  )
A、2B、4C、8D、16

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A,B,C,D为四个不同点,且
AB
+
BC
+
CD
+
DA
=
0
,则(  )
A、A,B,C,D四点必共面
B、A,B,C,D四点构成一个空间四边形
C、A,B,C,D四点必共线
D、A,B,C,D四点的位置无法确定

查看答案和解析>>

科目:高中数学 来源: 题型:

直线y=
3
x与双曲线C:
x2
a2
+
y2
b2
=1(a>0,b>0)左右两支分别交于M、N两点,F为双曲线C的右焦点,O是坐标原点,若|FO|=|MO|,则双曲线的离心率等于(  )
A、
3
+
2
B、
3
+1
C、
2
+1
D、2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

若a<-b<0,则|a+b|-|a-b|=
 

查看答案和解析>>

同步练习册答案