精英家教网 > 高中数学 > 题目详情

已知函数f(x)=(k为常数,e=2.718 28…是自然对数的底数),曲线yf(x)在点(1,f(1))处的切线与x轴平行.

(1)求k的值;

(2)求f(x)的单调区间;

(3)设g(x)=(x2x)f′(x),其中f′(x)为f(x)的导函数,证明:对任意x>0,g(x)<1+e-2.

解析 (1)由f(x)=

f′(x)=x∈(0,+∞)

由于曲线yf(x)在(1,f(1))处的切线与x轴平行,

所以f′(1)=0,因此k=1.

(2)由(1)得f′(x)=(1-xxlnx),x∈(0,+∞).

h(x)=1-xxlnxx∈(0,+∞),

x∈(0,1)时,h(x)>0;当x∈(1,+∞)时,h(x)<0.

又ex>0,所以当x∈(0,1)时,f′(x)>0;

x∈(1,+∞)时,f′(x)<0.

因此f(x)的单调递增区间为(0,1),单调递减区间为(1,+∞).

(3)因为g(x)=(x2x)f′(x),

所以g(x)=(1-xxlnx),x∈(0,+∞).

因此,对任意x>0,

g(x)<1+e-2等价于1-xxlnx<(1+e-2).

由(2)中h(x)=1-xxlnxx∈(0,+∞),

所以h′(x)=-lnx-2=-(lnx-lne-2),x∈(0,+∞).

因此,当x∈(0,e-2)时,h′(x)>0,h(x)单调递增;

当x∈(e-2,+∞)时,h′(x)<0,h(x)单调递减.

所以h(x)的最大值为h(e-2)=1+e-2.

故1-x-xlnx≤1+e-2.

设φ(x)=ex-(x+1).

因为φ′(x)=ex-1=exe0

所以当x∈(0,+∞)时,φ′(x)>0,φ(x)单调递增,

φ(x)>φ(0)=0.

故当x∈(0,+∞)时,φ(x)=ex-(x+1)>0,

>1.

所以1-x-xlnx≤1+e-2<(1+e-2).

因此,对任意x>0,g(x)<1+e-2.

练习册系列答案
相关习题

科目:高中数学 来源:2011届南京市金陵中学高三第四次模拟考试数学试题 题型:解答题

(本小题满分16分)已知函数f(x)=ax2-(2a+1)x+2lnx(a为正数).
(1) 若曲线y=f(x)在x=1和x=3处的切线互相平行,求a的值;
(2) 求f(x)的单调区间;
(3) 设g(x)=x2-2x,若对任意的x1∈(0,2],均存在x2∈(0,2],使得f(x1)<g(x2),求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年浙江省杭州市高三上学期开学考试数学卷 题型:选择题

已知函数f(x)=4x2mx+5在区间[-2,+∞)上是增函数,则f(1)的范围是(  )

A.f(1)≥25         B.f(1)=25     C.f(1)≤25         D.f(1)>25

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年湖南省高三第三次月考文科数学卷 题型:选择题

已知函数f(x)=若f(a)=,则a=                 (  )

A.-1                      B.

C.-1或                 D.1或-

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年湖北省天门市高三天5月模拟文科数学试题 题型:填空题

  已知函数f(x)=ax2+bx+c(a≠0),且f(x)=x无实根,下列命题中:

    (1)方程f [f (x)]=x一定无实根;

    (2)若a>0,则不等式f [f (x)]>x对一切实数x都成立;

    (3)若a<0,则必存在实数x0,使f [f (x0)]>x0;

    (4)若a+b+c=0,则不等式f [f (x)]<x对一切x都成立;

    正确的序号有          .              

 

查看答案和解析>>

科目:高中数学 来源:2012届江西省南昌市高三第一次模拟测试卷理科数学试卷 题型:选择题

已知函数f(x)=|lg(x-1)|-()x有两个零点x1x2,则有

A.x1x2<1    B.x1x2<x1x2

C.x1x2x1x2    D.x1x2>x1x2

 

 

查看答案和解析>>

同步练习册答案