精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=ex
(Ⅰ)求曲线f(x)过O(0,0)的切线l方程;
(Ⅱ)求曲线f(x)与直线x=0,x=1及x轴所围图形的面积.

【答案】解:(Ⅰ)设切线l与曲线f(x)相切于P(t,et), 由f(x)的导数f′(x)=ex
切线斜率k=et= ,解得t=1,切线的斜率k为e,
故切线l的方程为y=ex;
(Ⅱ)由题意可得,所求图形面积为 exdx=ex| =e1﹣e0=e﹣1
【解析】(Ⅰ)设切线l与曲线f(x)相切于P(t,et),运用导数的几何意义,可得切线的斜率,由两点的斜率公式,解方程可得t,即可得到斜率和切线方程;(Ⅱ)由题意可得,所求图形面积为 exdx,求得被积函数,运用定积分公式,计算即可得到所求值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】若函数f(x)=x2+ax﹣ 在( ,+∞)是增函数,则a的取值范围(
A.(﹣∞,3]
B.(﹣∞,﹣3]
C.[﹣3,+∞)
D.(﹣3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)的定义域为R,f(1)=3,对任意x∈R,f′(x)<2,则f(x)<2x+1的解集为(
A.(1,+∞)
B.(﹣1,1)
C.(﹣∞,1)
D.(﹣∞,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

(1)求的单调区间;

(2)在锐角中,角的对边分别为 ,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数图象上不同两点 处切线的斜率分别是 ,规定为线段的长度)叫做曲线在点之间的“弯曲度”,给出以下命题:

①函数图象上两点的横坐标分别为1和2,则

②存在这样的函数,图象上任意两点之间的“弯曲度”为常数;

③设点 是抛物线上不同的两点,则

④设曲线是自然对数的底数)上不同两点 ,且,若恒成立,则实数的取值范围是

其中真命题的序号为__________.(将所有真命题的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在某次测量中得到的A样本数据如下:82,84,84,86,86,86,88,88,88,88.若B样本数据恰好是A样本数据都加2后所得数据,则A,B两样本的下列数字特征对应相同的是(
A.众数
B.平均数
C.中位数
D.标准差

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于函数f(x)=x3﹣3x2 , 给出下列四个命题: ①f(x)是增函数,无极值;
②f(x)是减函数,有极值;
③f(x)在区间(﹣∞,0]及[2,+∞)上是增函数;
④f(x)有极大值为0,极小值﹣4;
其中正确命题的个数为(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设a,b,c∈(﹣∞,0),则a+ ,b+ ,c+
A.都不大于﹣2
B.都不小于﹣2
C.至少有一个不大于﹣2
D.至少有一个不小于﹣2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数
(1)判断f(x)的奇偶性并证明;
(2)若f(x)的定义域为[α,β](β>α>0),判断f(x)在定义域上的增减性,并加以证明;
(3)若0<m<1,使f(x)的值域为[logmm(β﹣1),logmm(α﹣1)]的定义域区间[α,β](β>α>0)是否存在?若存在,求出[α,β],若不存在,请说明理由.

查看答案和解析>>

同步练习册答案