精英家教网 > 高中数学 > 题目详情
3.抛物线y=ax2(a≠0)的准线方程是(  )
A.$x=\frac{a}{4}$B.$x=-\frac{1}{4a}$C.$y=\frac{a}{4}$D.$y=-\frac{1}{4a}$

分析 先将抛物线化为标准方程形式,进而根据抛物线的性质得到准线方程.

解答 解:抛物线y=ax2(a≠0)的标准方程为:x2=$\frac{1}{a}$y,
其准线方程为:y=-$-\frac{1}{4a}$,
故选:D

点评 本题考查的知识点是抛物线的简单性质,熟练掌握抛物线的性质是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.若集合M={1,2,3},则满足M∪N=M的集合N的个数是8个.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知f($\frac{2x}{x+1}$)=x2-1,则f($\frac{1}{2}$)=(  )
A.-$\frac{3}{4}$B.-$\frac{8}{9}$C.8D.-8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知数列{an}中,a2=102,an+1-an=4n,则数列$\left\{{\frac{a_n}{n}}\right\}$的最小项是(  )
A.第6项B.第7项C.第8项D.第9项

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在△ABC中,角A,B,C所对的边分别为a,b,c,且满足$\frac{\sqrt{3}a}{sinA}=\frac{b}{cosB}$.
(1)求角B的大小;
(2)求$\sqrt{3}$sinA-cosC的最大值,并求取得最大值时角A,B的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.直线l过点M(2,1),且与椭圆$\frac{x^2}{8}+\frac{y^2}{4}=1$交于A,B两点,O是坐标原点.
(Ⅰ)若点M是弦AB的中点,求直线l的方程;
(Ⅱ)若直线l过椭圆的左焦点,求数量积$\overrightarrow{OA}•\overrightarrow{OB}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知函数f(x)是R上的奇函数,若f(1)=2则f(-1)+f(0)=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若集合A={x|-1<x<2},B={x|(2x+1)(3-x)<0},则A∩B是(  )
A.{x|2<x<3}B.{x|-$\frac{1}{2}$<x<2}C.{x|-1$<x<-\frac{1}{2}$}D.{x|-1$<x<\frac{1}{2}$或2<x<3}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知△ABC中,AB=AC,以点B为圆心,以BC为半径的圆分别交AB,AC于D,E两点,且EF为该圆的直径.
(1)求证:∠A=2∠F;
(2)若AE=$\frac{1}{2}$EC=1,求BC的长.

查看答案和解析>>

同步练习册答案